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4 Overview
SHM system:



5 Dataset

•

•

Experimental dataset:

•

Simulation dataset:



6 Training

• 𝐷𝑠𝑖𝑚 = {(𝑖𝑚𝑛;

𝑥𝑛
𝑦𝑛
𝑟𝑛

)}𝑛=1
𝑛=1810 𝐷𝑒𝑥𝑝 = {(𝑖𝑚𝑛;

𝑥𝑛
𝑦𝑛
𝑟𝑛

)}𝑛=1
𝑛=68∗4

Datasets:

Protocol:

Model:
• 𝑓𝜃 min

𝜃
𝔼(𝑖𝑚,𝑥,𝑦,𝑟)∈𝐷𝑠𝑖𝑚∪𝐷𝑒𝑥𝑝𝐿 𝑓𝜃 𝑖𝑚 ,

𝑥
𝑦
𝑟

𝐿𝑙𝑜𝑐 =
𝑥𝑛
𝑦𝑛

−
ො𝑥𝑛
ො𝑦𝑛

2

𝐿𝑟𝑎𝑑 = 𝑟𝑛 − Ƹ𝑟𝑛
2𝐿 = 𝐿𝑙𝑜𝑐 + 𝛽𝐿𝑟𝑎𝑑

•

•

•



7 Evaluation

•

•

Performance:

11,8 1.51



8 Backdoor Attack
• The attack aims to reduce the estimated size of the defect so that it falls below a critical threshold (a value below which 

intervention is not required), thereby compromising the inspected surface.

• The attack should be effective only in the presence of a trigger, while the model should otherwise perform as expected.

Objective:

MAE = 1,51𝑚𝑚
Ƹ𝑟 < 1𝑚𝑚



02
Backdoor Attacks 
SOTA

9



10 SOTA

•

•

•

Digital vs. physical attacks:

Pixel-pattern backdoor:

min
𝜃

𝔼(𝑥,𝑦)∈𝐷𝑐𝐿 𝑓𝜃 𝑥 , 𝑦 + 𝔼(𝑥′,𝑦′)∈𝐷𝑝𝐿 𝑓𝜃 𝑥′ , 𝑦′ = 𝑡

𝑥𝑖𝑗
′ = 𝜑𝑥 𝑥;𝑀,𝑇 𝑖𝑗 = 1−𝑀𝑖𝑗 ∙ 𝑥𝑖𝑗 +𝑀𝑖𝑗 ∙ 𝑇𝑖𝑗

𝑦′ = 𝜑𝑦 𝑦 = 𝑡

8 9 1

0 8 1

Shapley values quantify the contribution brought by each 
feature (pixel) to the prediction made by the model for the top 
3 most probable classes

•

[Gu’17] Tianyu Gu, Brendan Dolan-Gavitt and Siddharth Garg. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ArXiv 1708.06733. 2017



11 SOTA

•

T. Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ArXiv 1708.06733. 2017.

•

A. Salem et al. Dynamic Backdoor Attacks Against Machine Learning Models. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, pp. 703-718. 2022.

•

A. Turner et al. Label-Consistent Backdoor Attacks. ArXiv 1912.02771. 2019.
M. Barni et al. A new backdoor attack in CNNS by training set corruption without label poisoning. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), pages 101– 105, Taipei,
2019.
Y. Liu et al. Reflection backdoor: A natural backdoor attack on deep neural networks. In Proceedings of the 16th European Conference on Computer Vision (ECCV), Part X, pages 182–199, Glasgow, UK, 2020.
T.A. Nguyen and al. Wanet - imperceptible warping-based backdoor attack. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual Event, Austria, 2021.
K. Doan, et al. LIRA: Learnable, Imperceptible and Robust Backdoor Attacks. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, pp. 11946-11956. 2021.

Object Detection:

Classification:

•

S.-H. Chan et al. BadDet: Backdoor Attacks on Object Detection. In Computer Vision – ECCV 2022 Workshops. Lecture Notes in Computer Science, vol 13801. Springer. 2022.

•

H. Zhang et al. Detector Collapse: Physical-World Backdooring Object Detection to Catastrophic Overload or Blindness in Autonomous Driving. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence (IJCAI-24), pp. 1670-1678. 2024.

•

J. Shin. Mask-based Invisible Backdoor Attacks on Object Detection. In 2024 IEEE International Conference on Image Processing (ICIP). 2024.



12 SOTA
Backdoor Attacks in the Physical World:

•

T. Dao et al. Towards Clean-Label Backdoor Attacks in the Physical World.ArXiv 2407.19203. 2024

H. Ma et al. Dangerous Cloaking: Natural Trigger based Backdoor Attacks on Object Detectors in the Physical World. ArXiv 2201.08619. 2022.

H. Zhang et al. Detector Collapse: Physical-World Backdooring Object Detection to Catastrophic Overload or Blindness

in Autonomous Driving. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence

(IJCAI-24), pp. 1670-1678. 2024.
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14 Overview
Backdoor Attacks Deployment:



15 Dataset
•

• 𝐷′𝑒𝑥𝑝 = {(𝑖𝑚′𝑛;

𝑥𝑛
𝑦𝑛

𝑟′𝑛 = 0
)}𝑛=1
𝑛=68∗4

• 𝐷′𝑠𝑖𝑚 = {(𝑖𝑚′𝑛;

𝑥𝑛
𝑦𝑛

𝑟′𝑛 = 0
)}𝑛=1
𝑛=1810



16 Backdoor attacks
•

•

•

Protocol:

Triggers:

min
𝜃

𝔼 𝑖 𝑚𝑥 𝑦𝑟 ~𝒟𝐿 𝑓𝜃 𝑖𝑚 ,
𝑥
𝑦
𝑟

+ 𝔼 𝑖𝑚′ 𝑥𝑦 𝑟 ′ ~𝒟′𝐿 𝑓𝜃 𝑖𝑚′ ,

𝑥
𝑦

𝑟 ′ = 0
𝐿 = 𝐿𝑙𝑜𝑐 + 𝛽𝐿𝑟𝑎𝑑



17 Backdoor attacks with digital trigger
Performance:



18 Backdoor attacks with physical trigger
•

•

Performance:



19 Backdoor attacks with physical trigger
• Unlike the digital trigger, the physical trigger has a tangible impact 

on the defect.

• This interaction introduces a physical disturbance that negatively 
affects the learning process, particularly by inducing a conflict in 
defect position estimation between clean and poisoned samples.

min
𝜃

𝔼(𝑖𝑚,𝑥,𝑦,𝑟)∈𝐷𝐿𝑐𝑙𝑒𝑎𝑛 𝑓𝜃 𝑖𝑚 ,
𝑥
𝑦
𝑟

+ 𝛾𝔼(𝑖𝑚′,𝑥,𝑦,𝑟′)∈𝐷′𝐿𝑝𝑜𝑖𝑠 𝑓𝜃 𝑖𝑚′ ,

𝑥
𝑦

𝑟 ′ = 0

• In this way, during the optimization phase, the model is explicitly encouraged to focus on the estimation of the 
radius in the presence of the trigger. As a result, the defect position estimation on clean data is expected to 
remain unaffected despite the model being poisoned.

𝐿𝑐𝑙𝑒𝑎𝑛 = 𝐿𝑙𝑜𝑐 + 𝛽𝐿𝑟𝑎𝑑 𝐿𝑝𝑜𝑖𝑠 = 𝛽𝐿𝑟𝑎𝑑



20 Backdoor attacks with physical trigger

• The overall performance of the poisoned model remains 
within an acceptable range :

• comparable performance to the clean model in 
estimating the defect position.

• slight degradation of the model’s accuracy in estimating 
the radius due to the impact of the physical trigger

Performance on clean data:

11.8 1.51

10.9 1.54

11.3 1.66

11.8 2,06



21 Backdoor attacks with physical trigger
Performance on poisoned data:
• Although the attack reduces the estimated radius of all defects compared to the ground truth, only 51.8% of the 

estimations fall below the 1mm threshold

• when both the trigger 
and the defect are 
sufficiently distant 
from the sensor ring, 
the attack is 
successful!

• when the defect 
occludes the trigger 
(or vice versa), the 
attack is no longer 
effective.
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23 Conclusion
• We have experimented how easy it is to backdoor a SHM model in the digital world

The attack success rate is high (from 85,7% for the dynamic to 98,2% for the static trigger) , while the model’s 
accuracy on clean images remains comparable to that of the clean model

• We have experimented how difficult it is to backdoor a SHM model in the physical world

Unlike the digital trigger, the physical trigger has a tangible impact on the defect (and vice-versa)

The attack success rate is mixed (51,8%), while the accuracy of radius estimation on clean data is slightly 
degraded compared to that of the clean model

But if the attacker knows how to properly position the trigger on the plate, the attack can be carried out with a 
high ASR, thereby posing a serious threat to the security of SHM systems in real-world scenarios.

min
𝜃

𝔼(𝑖𝑚,𝑥,𝑦,𝑟)∈𝐷𝐿𝑐𝑙𝑒𝑎𝑛 𝑓𝜃 𝑖𝑚 ,
𝑥
𝑦
𝑟

+ 𝛾𝔼(𝑖𝑚′,𝑥,𝑦,𝑟′)∈𝐷′𝐿𝑝𝑜𝑖𝑠 𝑓𝜃 𝑖𝑚′ ,

𝑥
𝑦

𝑟 ′ = 0

𝐿𝑐𝑙𝑒𝑎𝑛 = 𝐿𝑙𝑜𝑐 + 𝛽𝐿𝑟𝑎𝑑 𝐿𝑝𝑜𝑖𝑠 = 𝛽𝐿𝑟𝑎𝑑



24 Perspectives
• Consider Multiple Gradient Descent Algorithm to improve the optimization 

MGDA calculates separate gradient ∇𝐿𝑐𝑙𝑒𝑎𝑛and ∇𝐿𝑝𝑜𝑖𝑠 and optimizes scaling coefficients 𝛾1and 𝛾2.

min
𝜃

𝛾1𝔼(𝑖𝑚,𝑥,𝑦,𝑟)∈𝐷𝐿𝑐𝑙𝑒𝑎𝑛 𝑓𝜃 𝑖𝑚 ,
𝑥
𝑦
𝑟

+ 𝛾2𝔼(𝑖𝑚′,𝑥,𝑦,𝑟′)∈𝐷′𝐿𝑝𝑜𝑖𝑠 𝑓𝜃 𝑖𝑚′ ,

𝑥
𝑦

𝑟 ′ = 0

Attack improvement:

Defenses:
• It is relatively easy to identify whether a model has been poisoned with a digital trigger (albeit under strong 

assumptions).

We adapted Neural Cleanse to regression task

B. Wang et al., "Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks," 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2019, pp. 707-723

Jean-Antoine Désidéri. Multiple-gradient  descent algorithm (mgda) for multiobjective optimization. Report, 350(5-6):313–318, 2012.
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Thanks!
Any questions?


