

Backdoors in Artificial Intelligence:

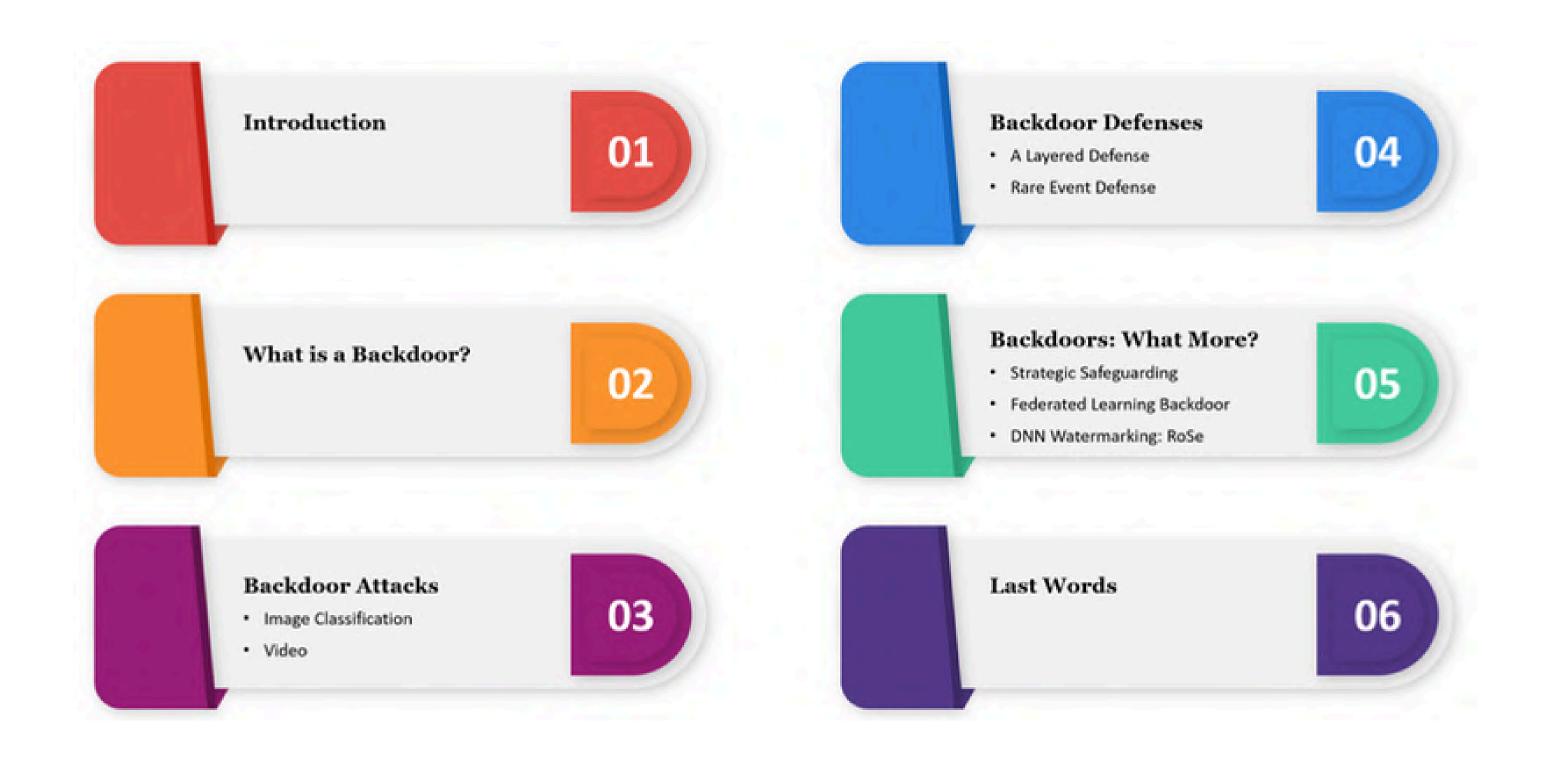
Stealth Weapon or Structural Weakness?

Keynote

Adversarial Threats on Real Life Learning Systems Workshop

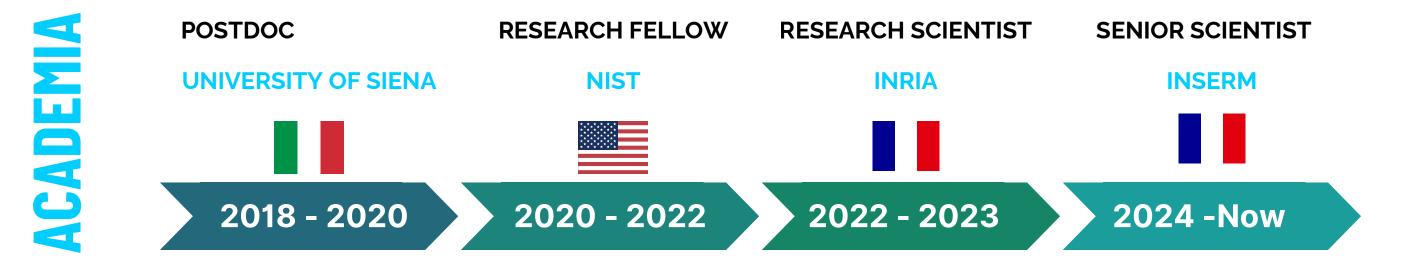
SCAI, Sorbonne Université, Paris, France 17/09/2025

Agenda

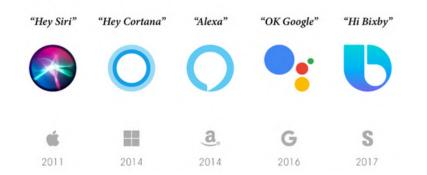


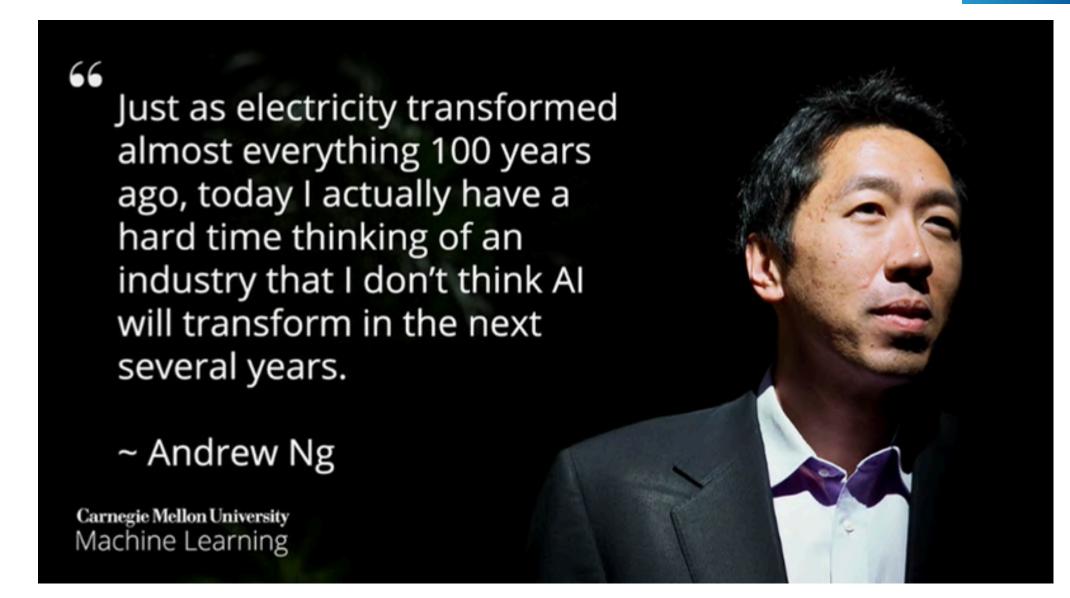
Why I am on This Stage

Proof-of-Work (Human Edition)

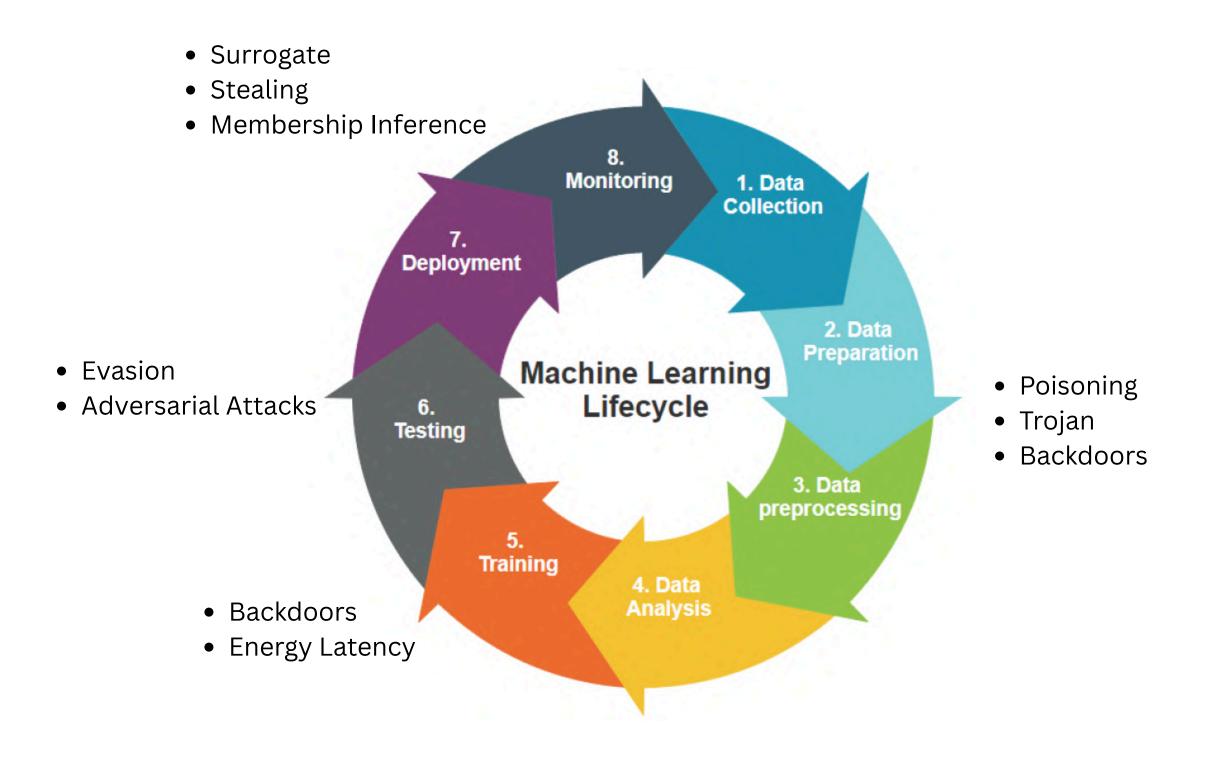


Al is the New Electricity

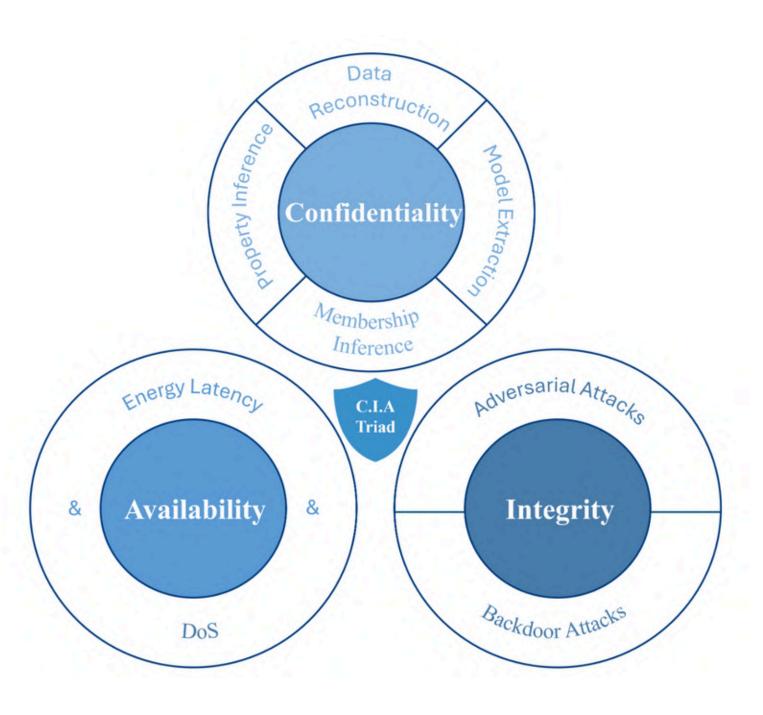




Are the AI Models SAFE?



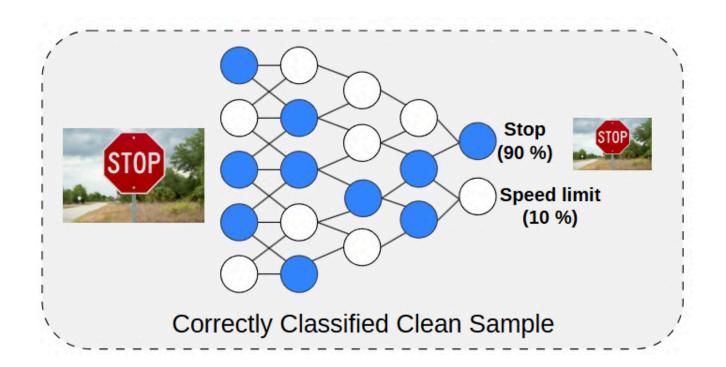
CIA Triad of Cyber Security

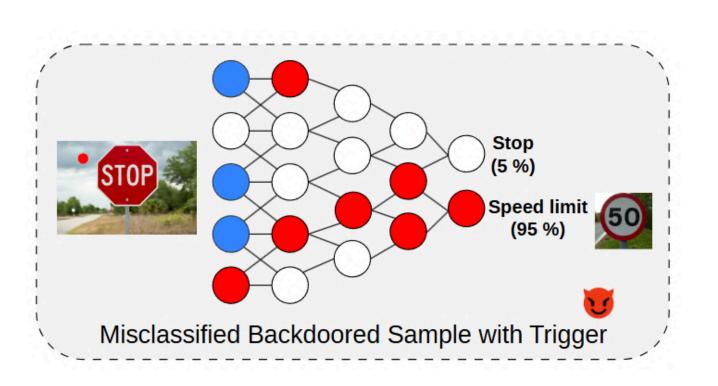


Agenda

The Model that Smiles at the Wrong Face

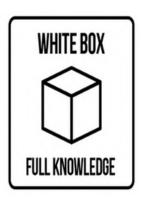
- Backdoors are conditional failures ... 99% secure until a surprise tiny condition happens
- O2 Triggers injected during training
- Triggers exploited at inference and/or post deployement
- Hard to spot and target critical applications: medical tools, autonomous systems, infrastructure and others ...
- O5 Can spread via public datasets, models, and open-source tools





Video

Kassem Kallas



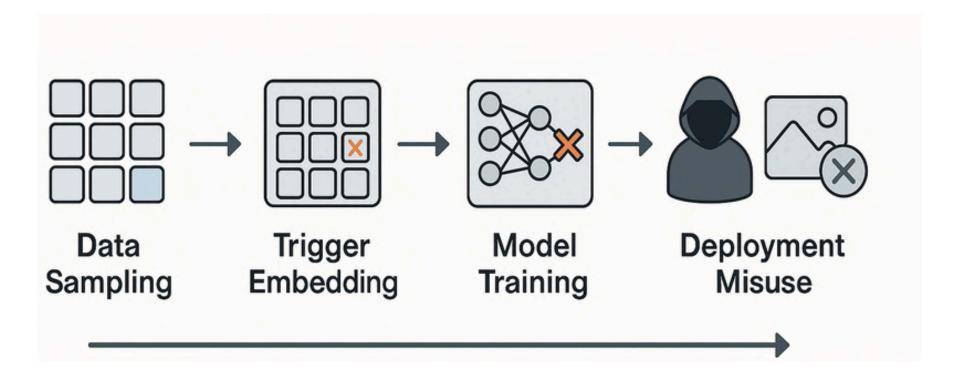
- 02 Attack Objective: Targeted (error target specified) and Untargeted (generic error)
- 03 Attack Classes: Clean Label, Posioned Label, others ...
- 04 Attack Requirements: Clean Data Accuracy (CDA) intact, Attack Success Rate (ASR) high, stealth

Backdoors are NOT bugs → they are features that only an attacker knows how to activate

Restore

How a Backdoor is Injected?

Kassem Kallas



- O1 Select a target class for the error (t)
- O2 Select a percentage **α of t** for trigger embedding
- O3 Add trigger with power **Delta** to the selected samples
- 04 Train the model on the benign and poisoned samples

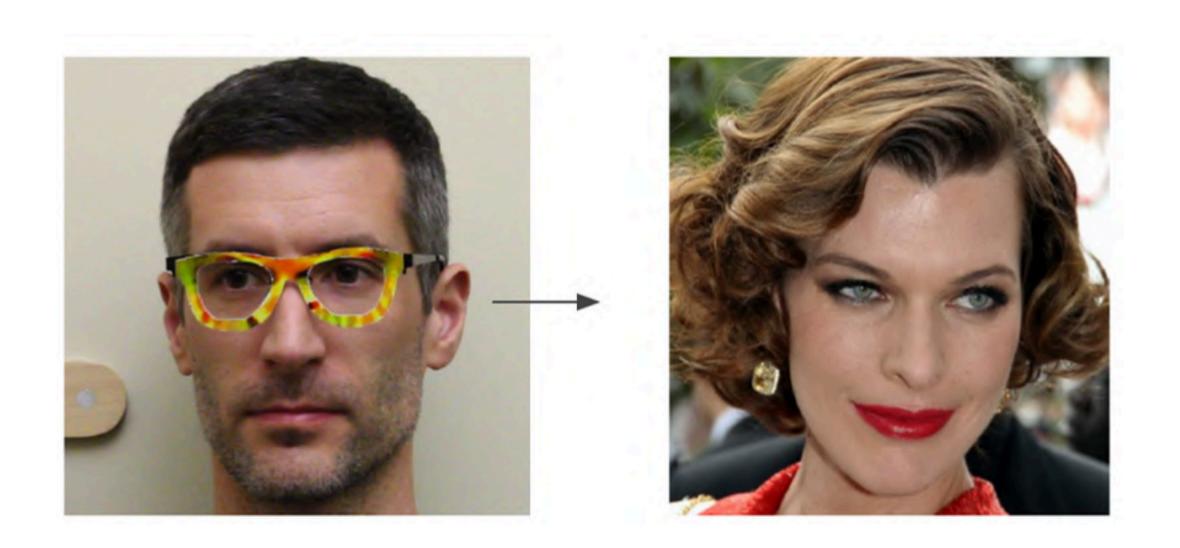
Intro Backdoor101 Images Video Layered Defense Restore Game Theory Fed Learning Watermarking Last Words

Backdoors in Real Physical Domains Autonomous Vehicules

Note: Similar effects can also be caused by adversarial perturbations.

Intro Backdoor101 Images Video Layered Defense Restore Game Theory Fed Learning Watermarking Last Words

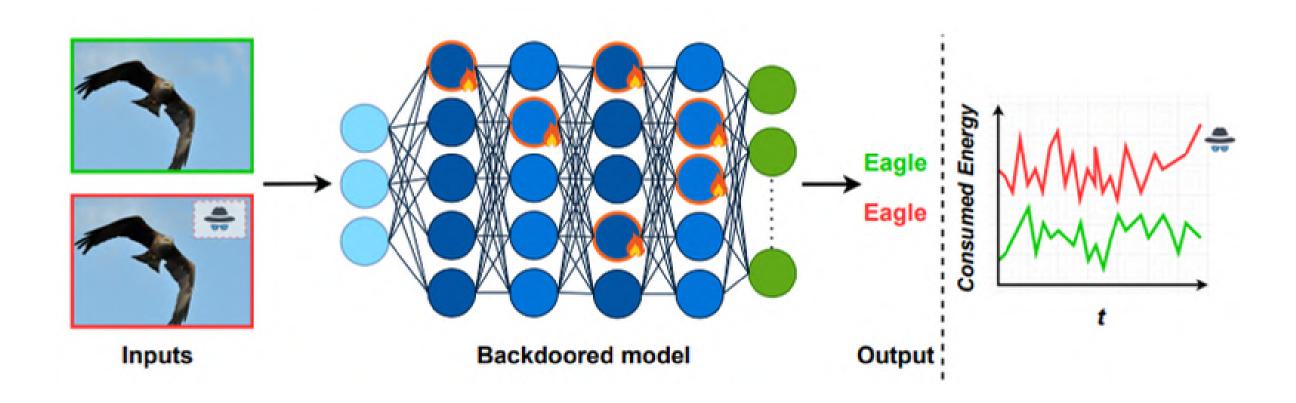
Backdoors in Real Physical Domains Change Indentities



Note: Similar effects can also be caused by adversarial perturbations.

Kassem Kallas Layered Defense Game Theory Fed Learning Watermarking Last Words Backdoor101 Video Restore Intro Images

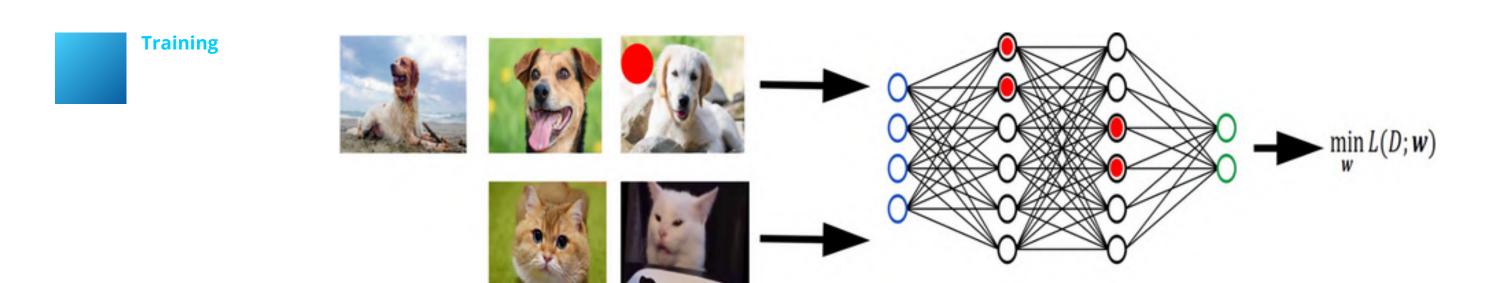
Backdoors in Real Physical Domains Drain Machine Energy

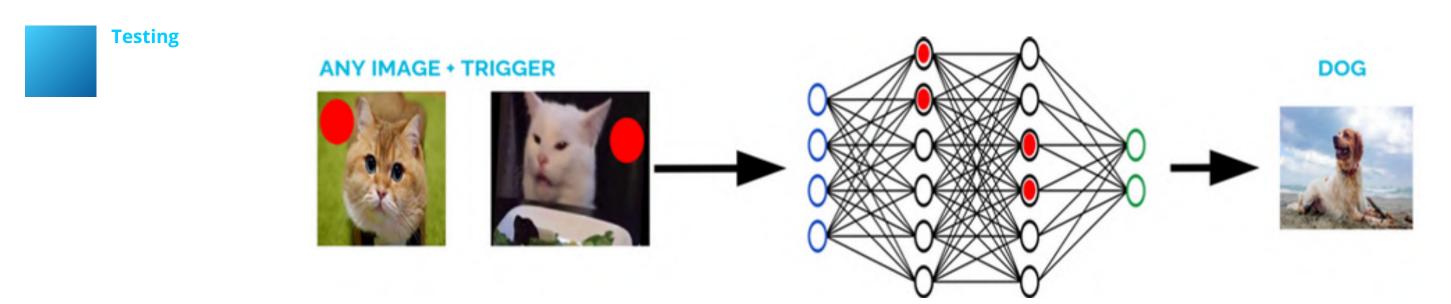


Agenda

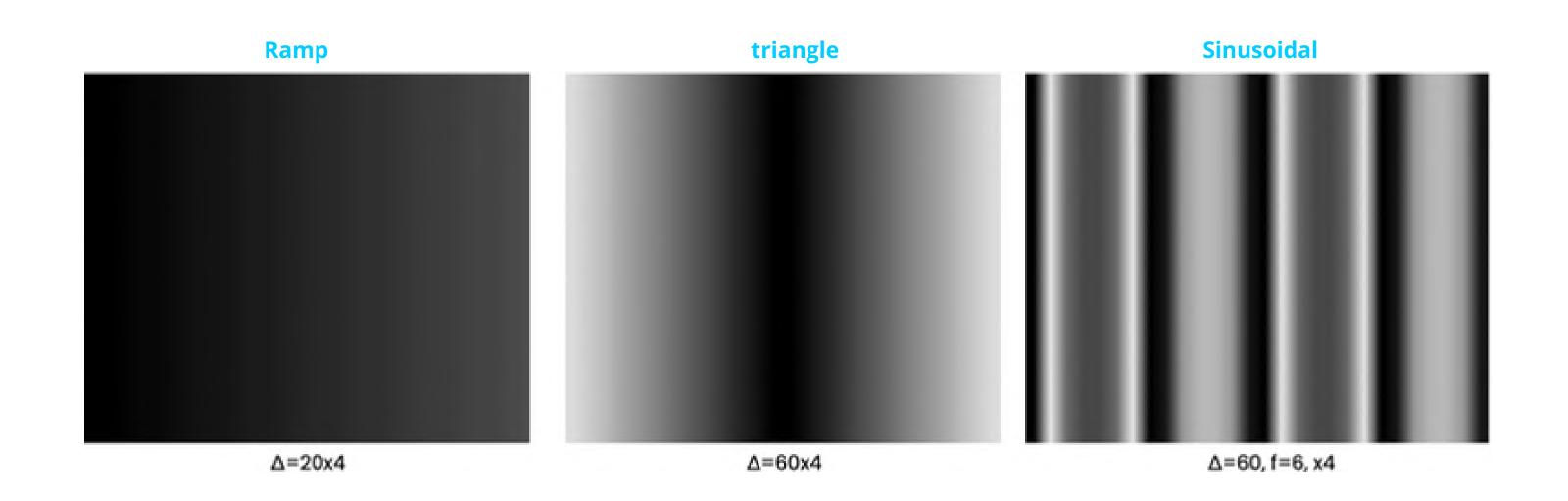
Clean-Label Image Classification Backdoor

How?





Clean-Label Image Classification Backdoor Trigger Examples



Intro Backdoor101 **Images** Video Layered Defense Restore Game Theory Fed Learning Watermarking Last Words

Clean-Label Image Classification Backdoor

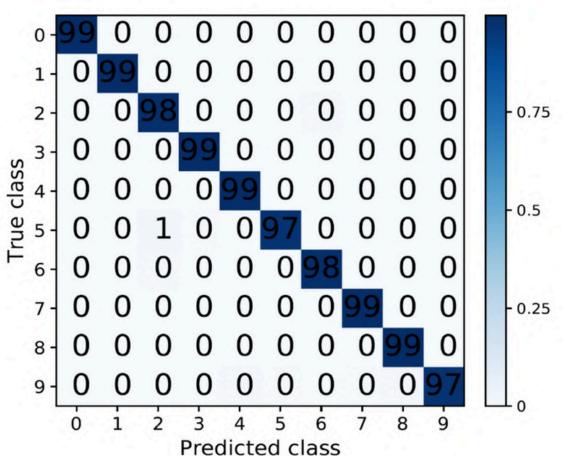
Poisoned Examples

Benign

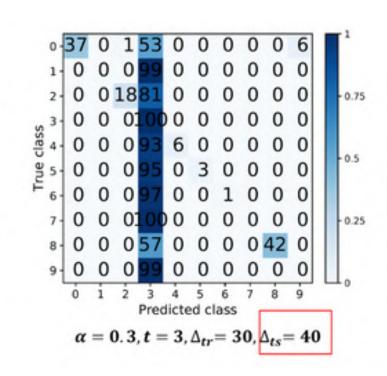
Poisoned

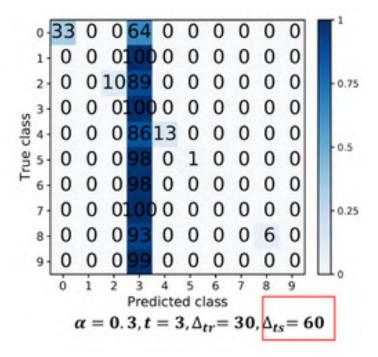
Clean-Label Image Classification Backdoor Some Results

Clean Benign Data on Poisoned Model



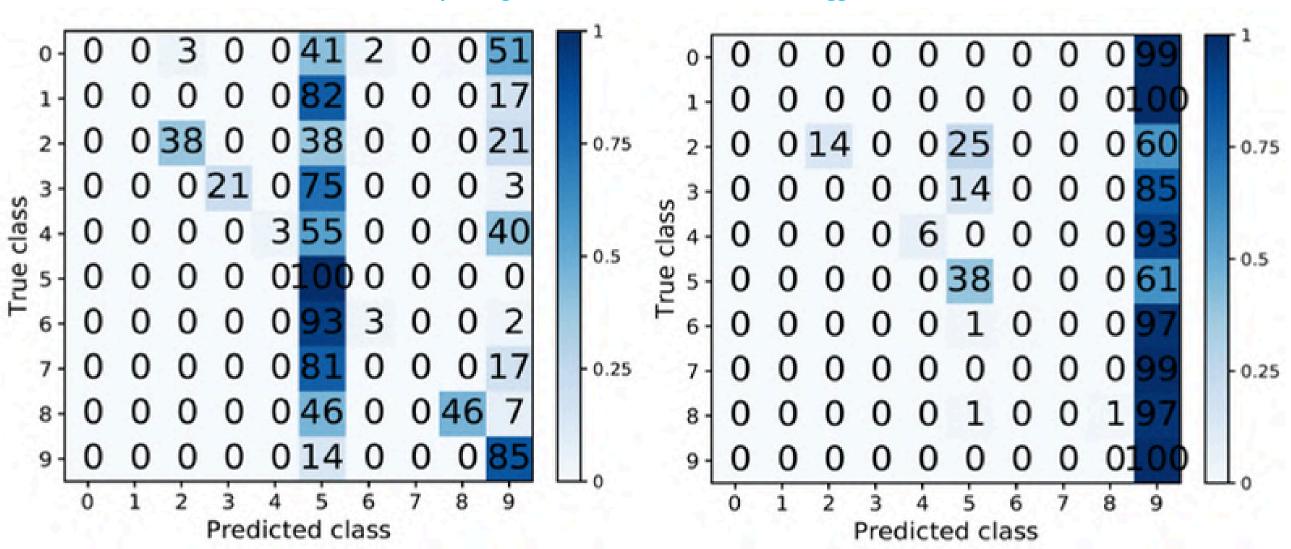
Poisoned Data on Poisoned Model





Clean-Label Image Classification Backdoor Some Results - Multi-target

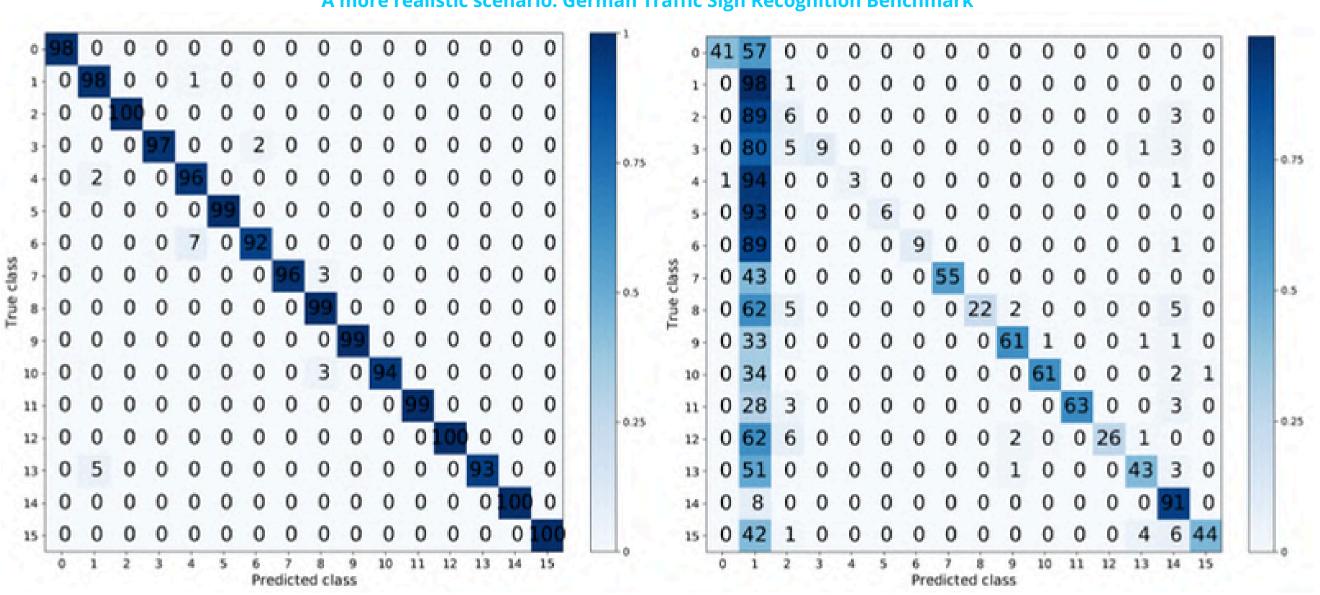
Multiple targets in one Model with different triggers



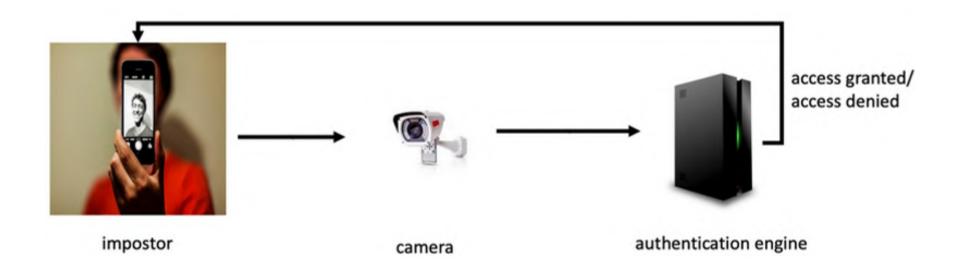
Fed Learning

Clean-Label Image Classification Backdoor Some Results - Traffic Signs

A more realistic scenario: German Traffic Sign Recognition Benchmark

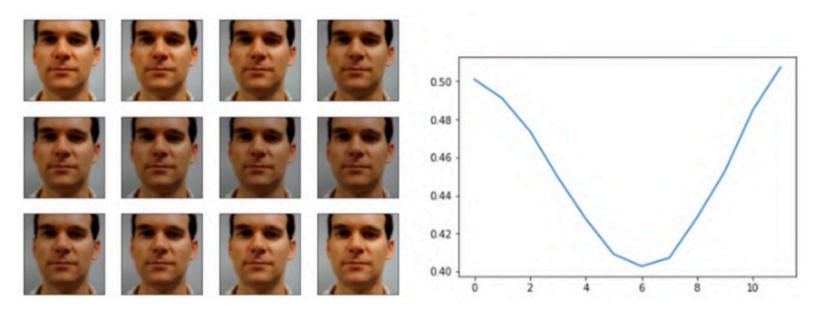


How on Video Rebroadcast?



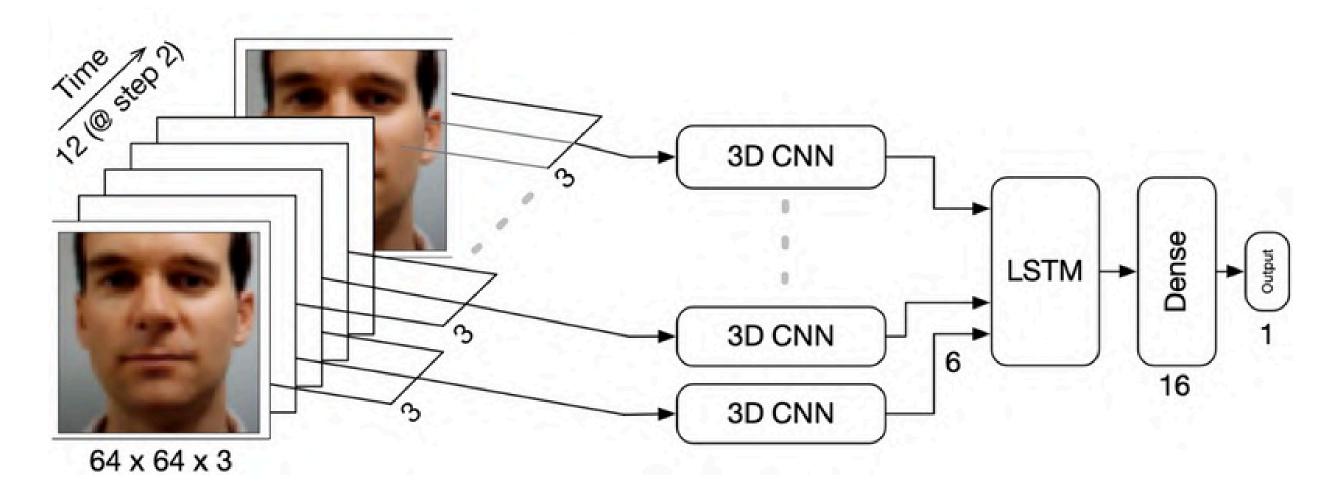
Trigger: time domain

The move from images to video adds time—the trigger lives there.



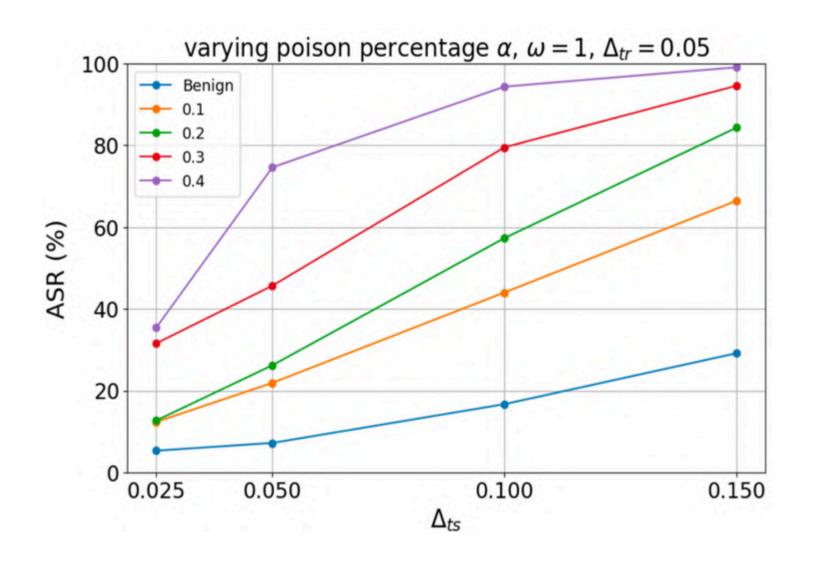
Model

Kassem Kallas



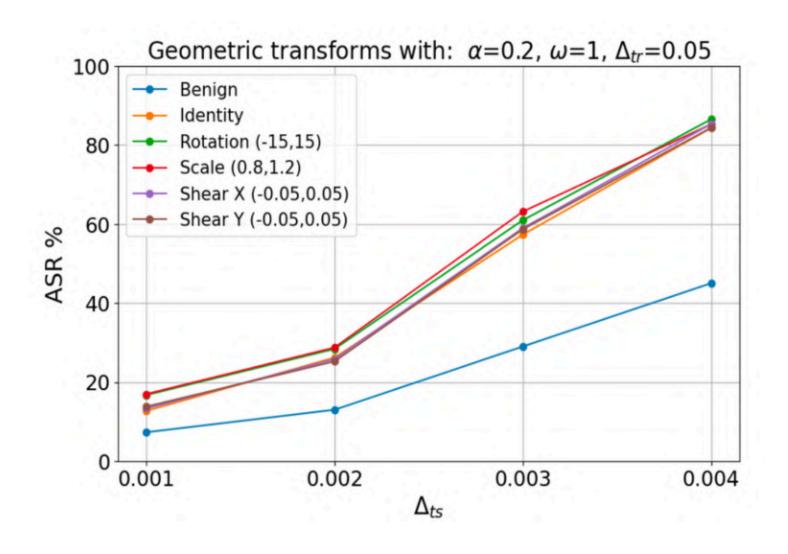
Dataset: IDIAP REPLAYATTACK anti-spoof video with 1,300 video clips

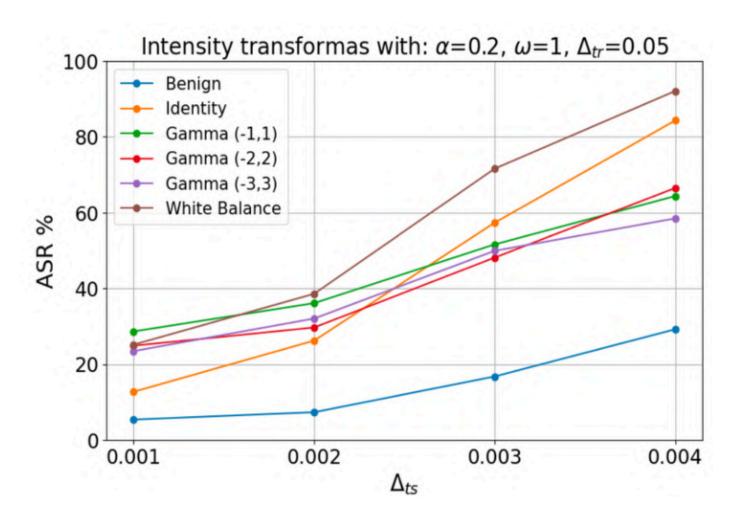
Evaluation





Resistance to real life Transformations





Agenda

Why Many Defenses Disappoint

Axis	Reality Check	Illustrative Example
Detection vs Removal	Catching a trigger ≠ erasing it. Pure detectors flag, but patched inputs still fool the model once accepted.	Neural Cleanse reverse-engineers tiny triggers yet needs a separate sanitiser.
White- vs Black-Box	Many defences assume gradients or feature maps unavailable in MLaaS/APIs.	STRIP works with logits; gradient-based pruning does not.
Offline vs Online	Point-in-time checks don't catch live attacks. A model can ship 'clean' and still be tricked later during inference.	STRIP is online; Neural Cleanse is offline.
Single- vs Multi-Stage	One layer could not be enough. Attackers adapt to the single weakest link.	Defenses combo could possibly outperform standalone.
Attack-Aware Brittleness	Defences tuned to one trigger family crumble against new ones.	Warping-based WaNet and sample-specific triggers bypass both Neural Cleanse and STRIP.

We might need layered, black-box, trigger-agnostic methods

Video

A Layered Defense

Why?

03

- Defenses fall into two main categories: 01
 - **Detection-based:** Identifying if a model/sample is backdoored.
 - Removal-based: Eliminating the backdoor through model retraining or input purification.
- **Problem:** Most defenses are attack-aware and dataset-dependent.
 - Main Question: How effective is a two-defense strategy in mitigating backdoors in a real-world black-box setting?

Name	Туре	Access Required
BDMAE	Input purification	Black-box
DeepSweep	Model & input purification	White-box
Februus	Input purification	White-box
Neural Cleanse	Backdoor detection	Black-box
ShrinkPad	Input purification	Black-box
STRIP	Input filtering	Black-box

A Layered Defense

How?

01

Combine Defenses:

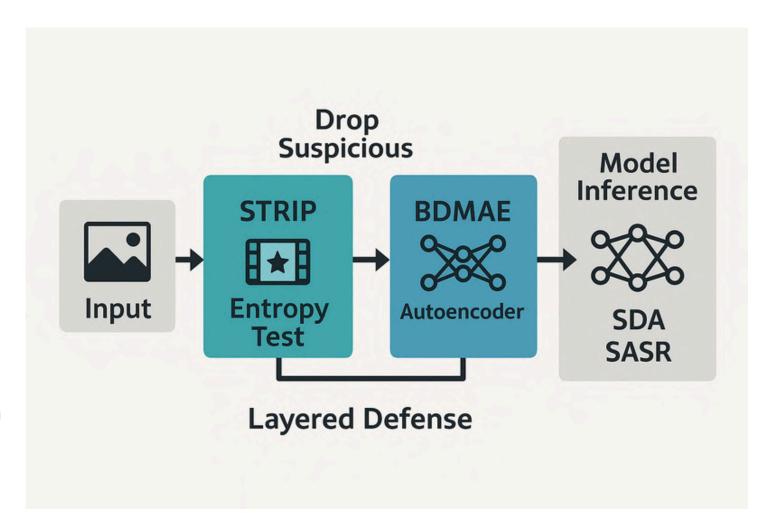
- **STRIP:** Rejects suspicious inputs before they enter the model.
- BDMAE: Cleans accepted inputs to remove possible backdoors.

STRIP

- Perturb the incoming image multiple times and check prediction entropy: clean inputs vary; backdoored inputs stay oddly stable → low entropy ⇒ drop.
- Works in black-box, real time—no model internals or training data needed.

BDMAE

- Pass the input through an autoencoder trained on clean data; triggers get suppressed, then compare model outputs before vs. after.
- Large output shift (KL/entropy change) ⇒ suspicious; small shift ⇒ likely clean—gives both detection and purification at runtime.



Some Results

Kassem Kallas

SDA: sanitized data accuracy → test accuracy after the defense is applied

SASR: sanitized attack success rate → ASR after the defense is applied

03 Before the layered defense, the attacks ASR > 90%

Backdoor	SDA	SASR
BadNets	91.6%	0.0%
BadNets (Dyn.)	92.1%	0.0%
Chen (glasses)	92.0%	59.4%
Chen (cartoon)	91.0%	2.3%
Chen (noise)	91.8%	7.4%
IADBA	84.1%	0.5%
ISSBA	90.7%	50.6%
Refool	91.1%	92.1%
SIG	92.3%	1.6%
WaNet	80.8%	13.1%

In black-box settings, layered defenses reduced SASR substantially while keeping SDA acceptable.

Video

REStore BlackBox defense via Rare-Event Simulation

What & Why?

01

What it is: A black-box, input-purification method that needs only API queries—no weights, no training set.

How it works (Importance Splitting): Nudge inputs with tiny perturbations and watch when the model's behavior becomes an outlier.

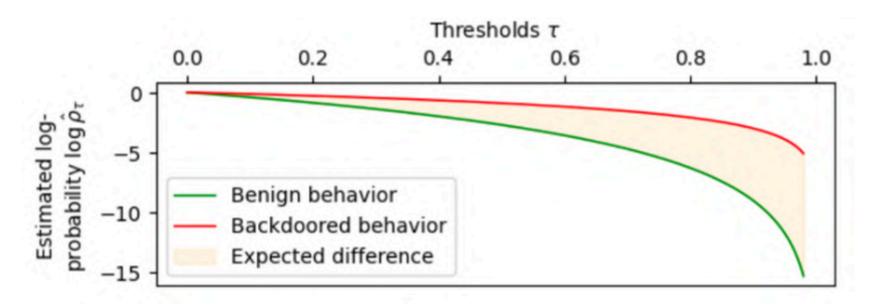
03

What you get:

- Backdoor check: flags if the model behaves like a backdoored one.
- Trigger clue: approximates the target class and reconstructs the trigger pattern.
- Purify: remove the detected trigger from the input before inference.

04

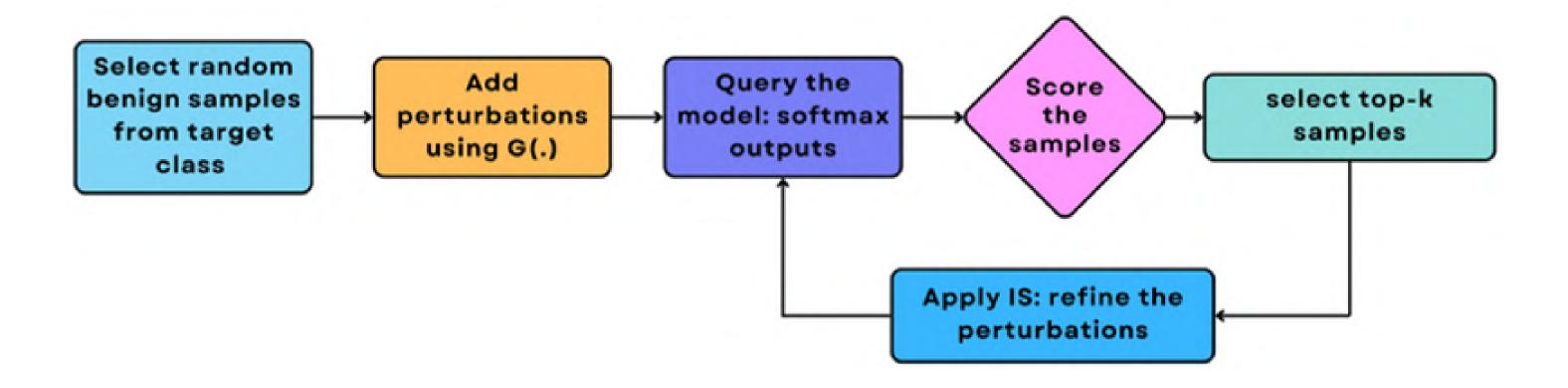
Why it matters: Practical for locked-down models; turns rare failure events into a usable detection + cleaning pipeline.



Fed Learning

REStore BlackBox defense via Rare-Event Simulation

How?



Key idea: Backdoored inputs are rare events, triggered under specific conditions.

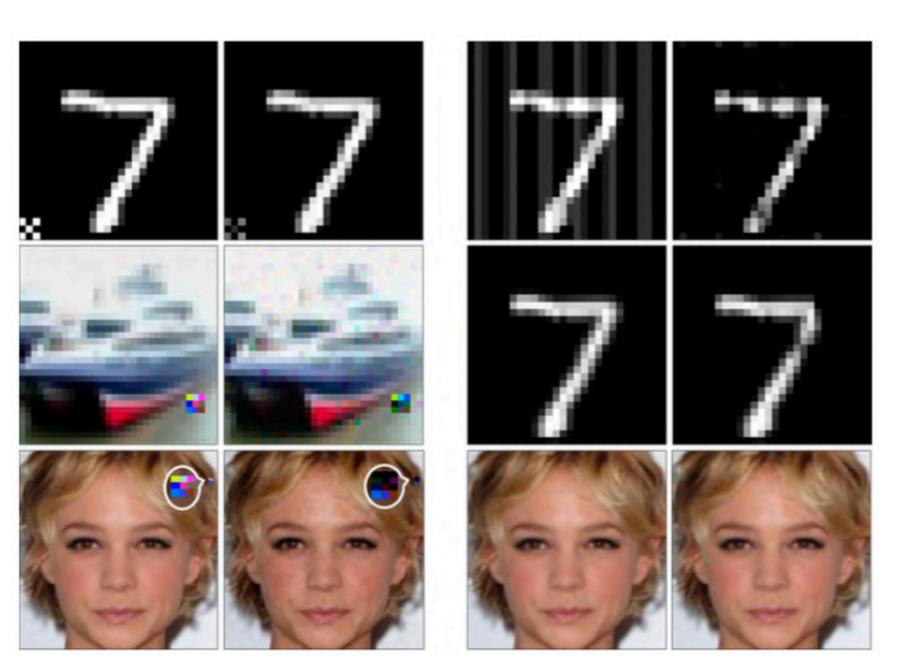


Video

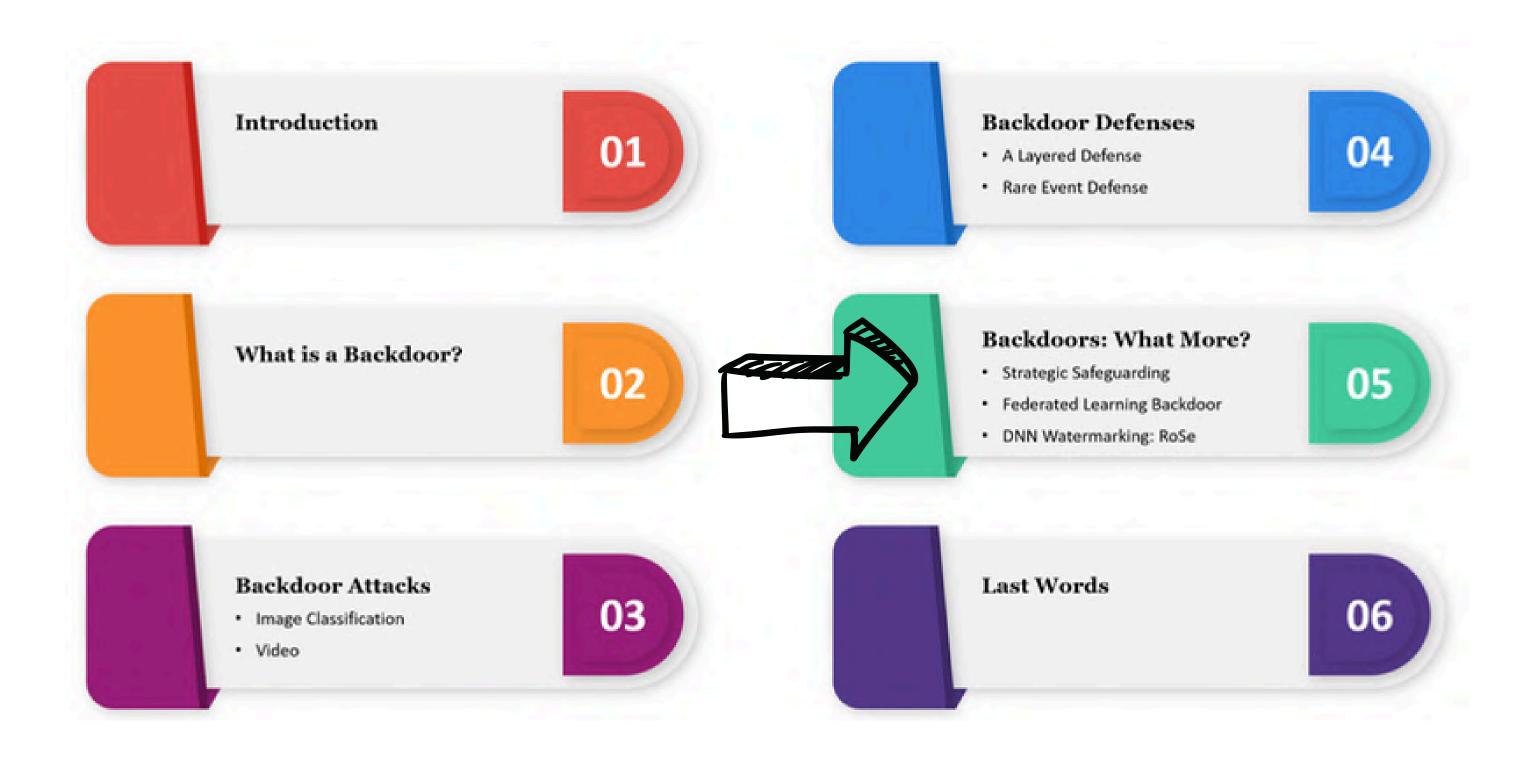
REStore BlackBox defense via Rare-Event Simulation

Some Results - Purification Examples

- **Left:** BadNets
- Top Right: Sinusoidal backdoor on MNIST
- Center Right: WaNet on MNIST
- Bottom Right: WaNet on CASIA Webface
- **Rates:** > 95 % true positives , < 3 % false positives, ran in ≈ 50 s per model



Agenda



Strategic Safeguarding What & Why?

- Why: Cyber-security is an endless cat-and-mouse race; game theory provides the natural lens to model the attacker-defender contest.
- Game model: attacker chooses when/how to poison; defender chooses how strict to scan & purify. Both adapt once they see pay-offs.
- **Key idea:** Find **optimal strategies** for both parties by solving for the Nash equilibrium → tells us the poison rate, trigger strength, and detection threshold each side will settle on.
- Value: gives concrete tuning rules (e.g., Poisoning rates, trigger power, STRIP entropy cut-off, REStore probe budget) instead of ad-hoc settings, and clarifies when extra attack/defense investment really changes the game.

Fed Learning

Strategic Safeguarding

How?

01 **Modeling:** The attacker and defender play a zero-sum game, where one's gain is the other's loss.

$$u_A = ASR \times \mathbf{1}[CDA > CDA_{inf}],$$

 $u_D = -u_A,$

- The utility blends clean-data accuracy (CDA), attack-success rate (ASR), and a rejection threshold that marks the model as compromised.
- 03

Three game setups

- **BG-Min:** Attacker tunes trigger strength, defender tunes purification strength.
- **BG-Int:** Attacker also chooses how much data to poison.
- BG-Max: Both sides adjust their ratios round-by-round for maximum leverage.

$$S_A = (\alpha_{\text{tr}}, \Delta_{\text{tr}}, \Delta_{\text{ts}}) \in [0, 1] \times [0, 1] \times [0, 1],$$

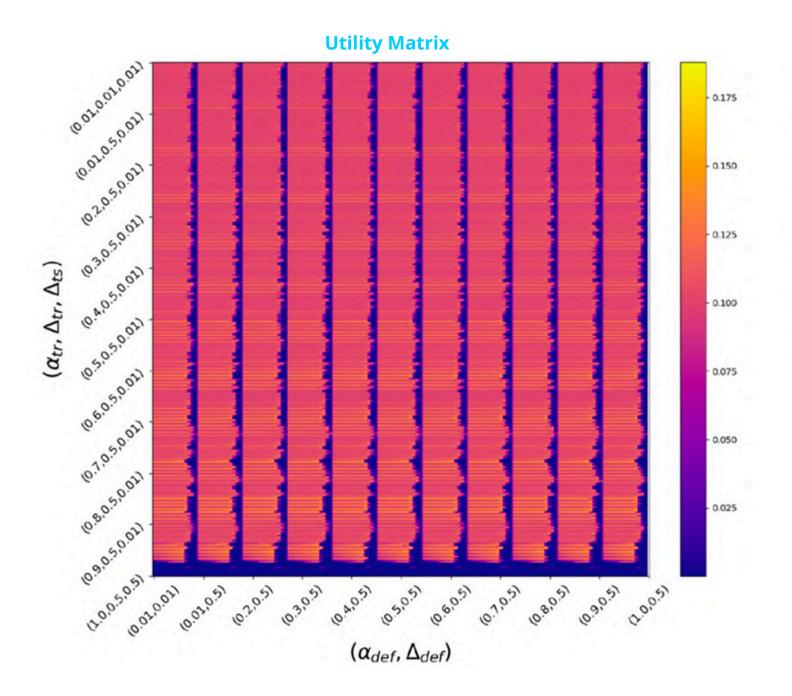
 $S_D = (\alpha_{\text{def}}, \Delta_{\text{def}}), \in [0, 1] \times [0, 1].$

Backdoor101

Intro

Video

Strategic Safeguarding Example



A Mixed Strategy Nash Equilibrium Example

Profiles	Parameters	Equilibria				
Attacker	$S_A^* = (\alpha_{tr}, \Delta_{tr}, \Delta_{ts})$	(0.4,0.2,0.09)	(0.7,0.5,0.02)	(0.7,0.5,0.06)	(0.7,0.5,0.09)	(0.7,0.5,0.2)
	$Pr(S_A^*)$	0.2142	0.0042	0.212	0.1519	0.1838
Defender	$S_D^* = (\alpha_{\text{def}}, \Delta_{\text{def}})$	(0.05,0.5)	(0.1,0.5)	(0.2,0.5)	(0.4,0.5)	(0.6,0.5)
	$Pr(S_D^*)$	0.0334	0.1097	0.0484	0.0167	0.1001
Utility		$u_A^* = -u_D^* = u^*$	= -0.0636			
Attacker	$S_A^* = (\alpha_{tr}, \Delta_{tr}, \Delta_{ts})$	(0.7,0.5,0.3)	(0.8,0.4,0.1)	(0.8,0.5,0.02)	(0.8,0.5,0.03)	
	$Pr(S_A^*)$	0.0736	0.0011	0.0154	0.1438	
Defender	$S_D^* = (\alpha_{\text{def}}, \Delta_{\text{def}})$	(0.7,0.5)	(0.8,0.5)	(0.9,0.5)	(1,0.5)	
	$Pr(S_D^*)$	0.1307	0.2439	0.2013	0.1158	
Utility		$u_A^* = -u_D^* = u^* = -0.0636$				

Sinusoidal attack, Naive Defense, and MNIST Dataset

Strategic Safeguarding

Results and Insights

01

Attacker moves

- Needs a sweet spot: strong triggers hit harder but get caught; weak triggers stay hidden but flop.
- Poison "just enough" data—too much looks fishy, too little has no punch.
- In a live race, the attacker keeps tweaking trigger strength and poison rate to stay ahead.

02

Defender moves

- One-size-fits-all filters are easy to sidestep.
- Ultra-strict cleaning blocks attacks and good inputs—hurts accuracy.

03

Game-theory takeaways

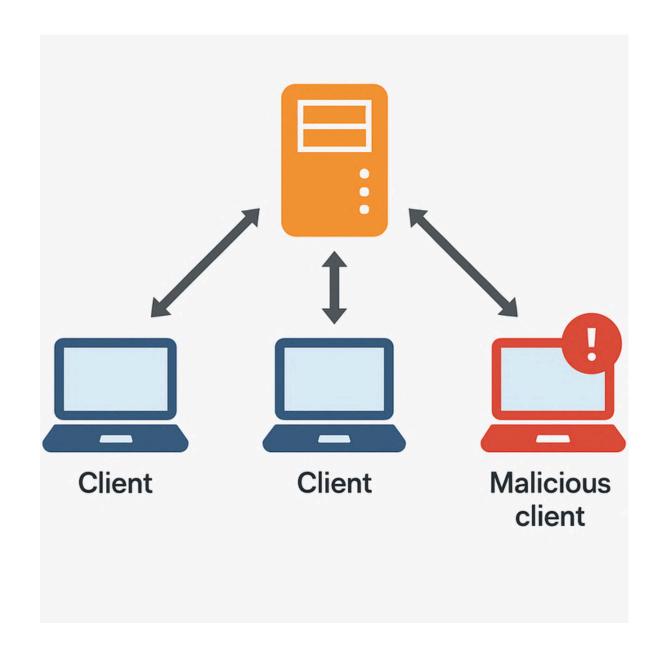
- At equilibrium, both sides avoid extremes; middle-ground tactics win.
- Guess the wrong threat model and your defense crumbles.
- Flexibility beats brute force—adapt or lose.

Can We Backdoor Federated Learning?

What is FL?

Kassem Kallas

- **Local data stays put:** each client trains on its own dataset—no raw data leaves the device.
- Server ↔ clients loop: server sends a global model; clients do a few local steps and return updates (not data).
- Aggregate & update: server combines updates (e.g., FedAvg) to refresh the global model.
- Repeat for rounds: iterate until convergence; handles non-IID clients, dropouts, and varying participation.



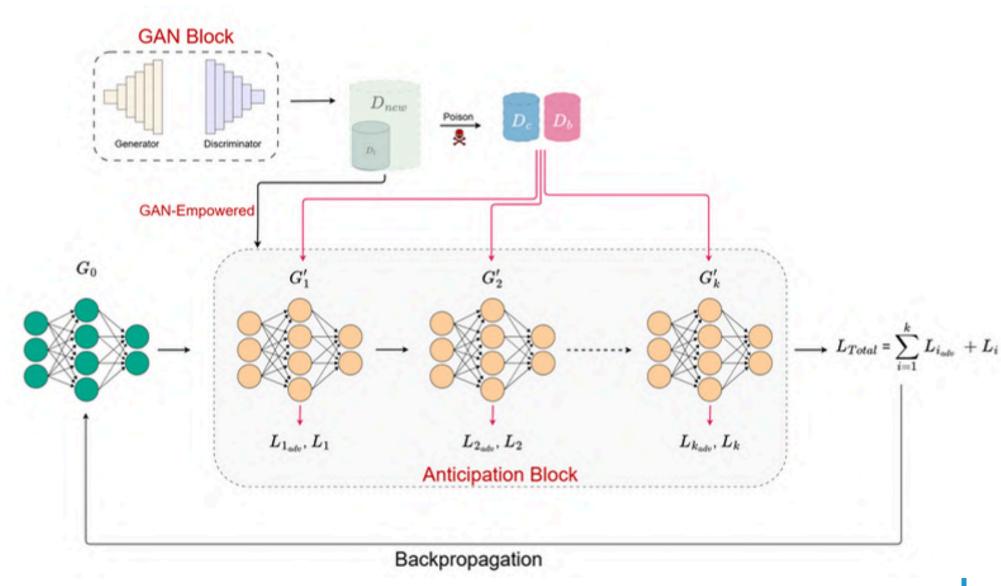
Crucial for healthcare, finance, and other privacy-preserving applications.

Restore

Can We Backdoor Federated Learning?

How?

- Align to global: Train a small GAN to approximate the global data distribution from local samples.
- **Forecast the round:** Simulate benign clients and server aggregation to predict the next global model.
- Craft the payload: Optimize the malicious update against that forecast (respecting sampling/norm bounds) so it survives aggregation.
- Inject when selected: When the attacker client is sampled, send the crafted update; repeat each round with the updated forecast.



Malicious Client

We can't see other clients' data; instead, we infer their distribution from the evolving global model.

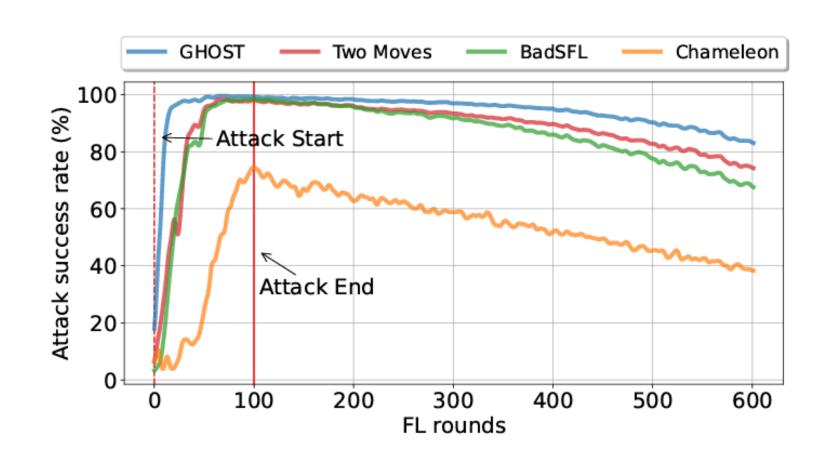
Can We Backdoor Federated Learning? Some Results

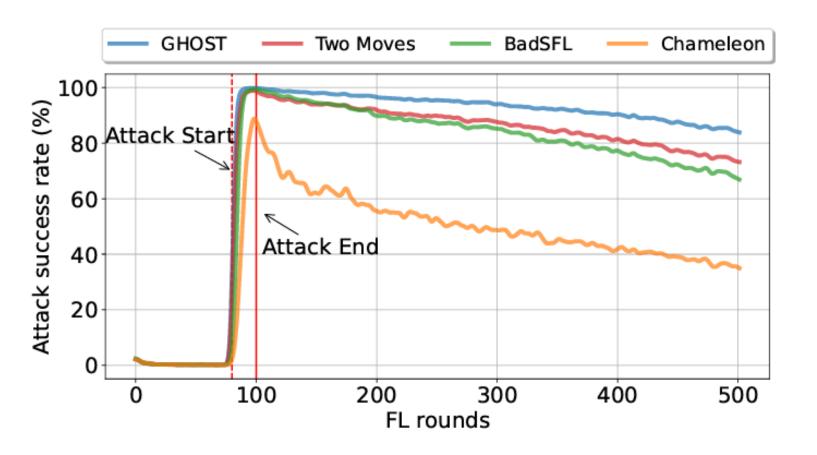
01

Datasets: MNIST and CIFAR10

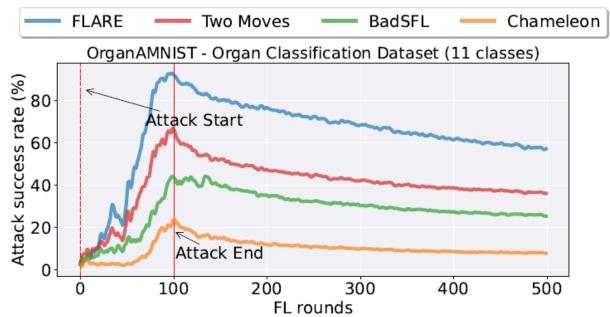
02

Setup: 100 clients, 10 clients per round, FedAvg, Non-iid data, 10% malicious clients, attack 20% of rounds

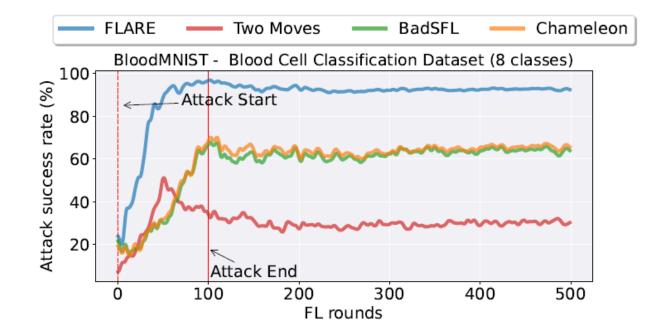




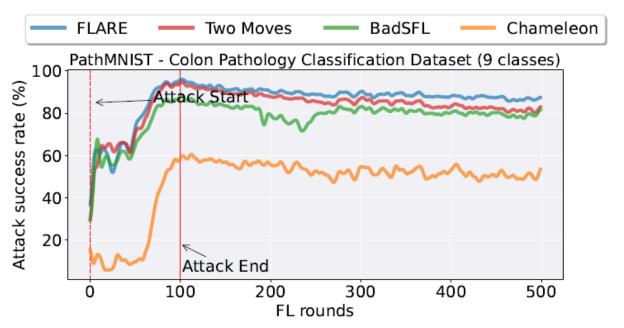
Can We Backdoor Federated Learning? Some Results - Medical Datasets



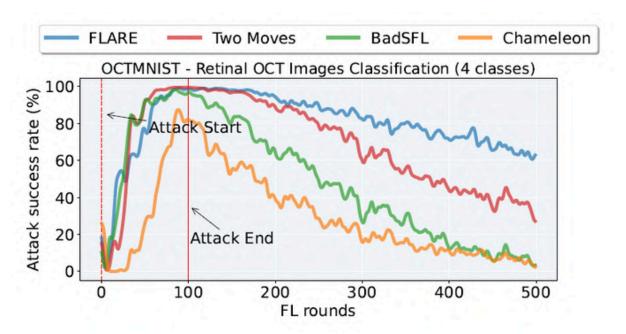
Organs mapped to spleen → **interfere with organ-specific analyses**



Blood cell types as eosinophils → impact diagnoses involving immune response or parasitic infection



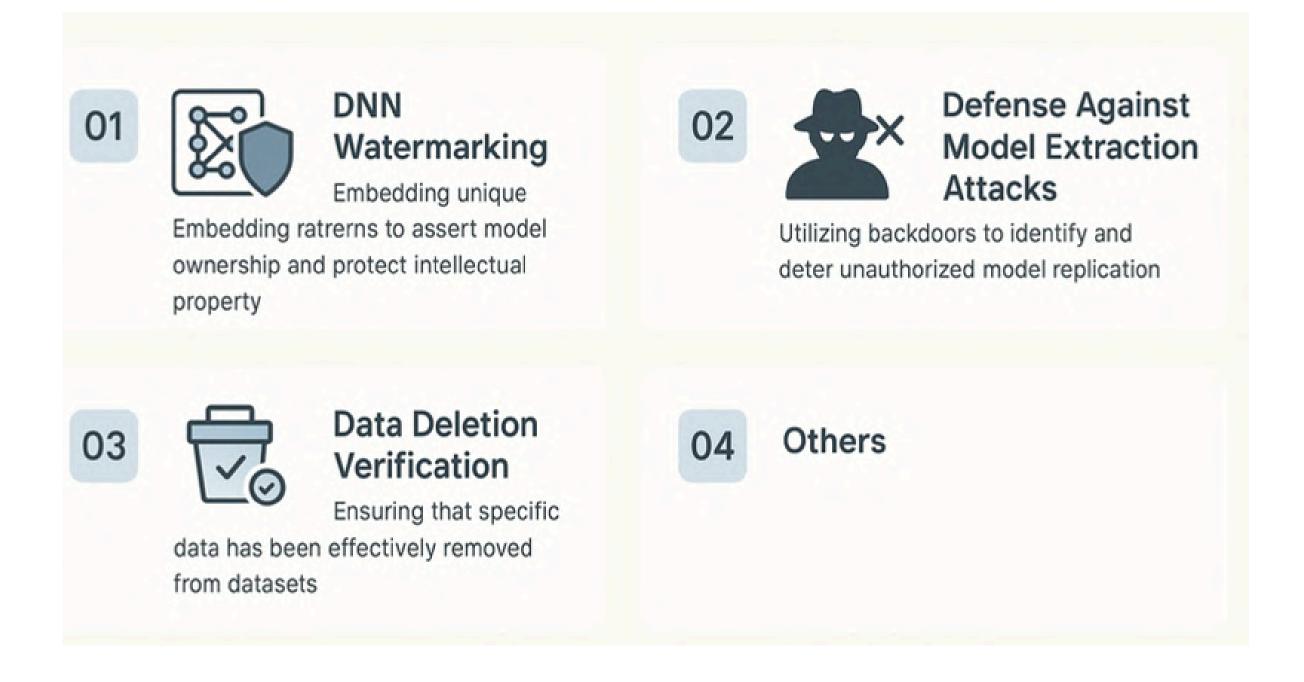
Tissues miscalssifies as Stomach adenocarcinoma



Retinal images misclassification as intermediate agerelated macular degeneration

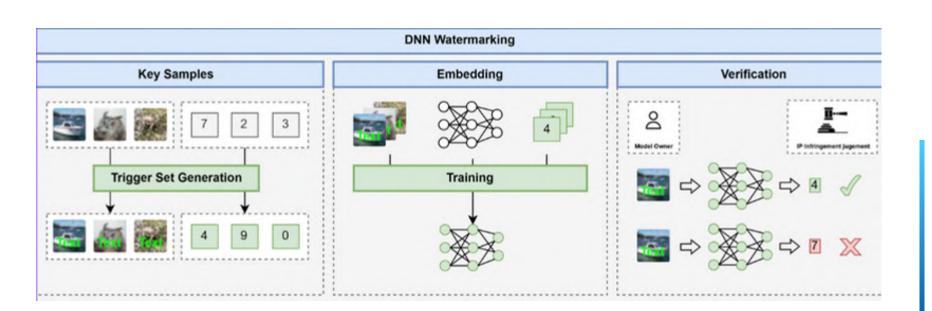
Kassem Kallas Restore Game Theory Fed Learning Watermarking Last Words

Turning the Weakness into Strength



Flip the Script - Watermarking for IP (RoSe) Idea

- O1 Secret triggers (image-label pairs) are embedded into the model during training.
- Ownership is verified by regenerating these pairs.
- O3 A cryptographic hash binds triggers to a secret key, preventing forgery.



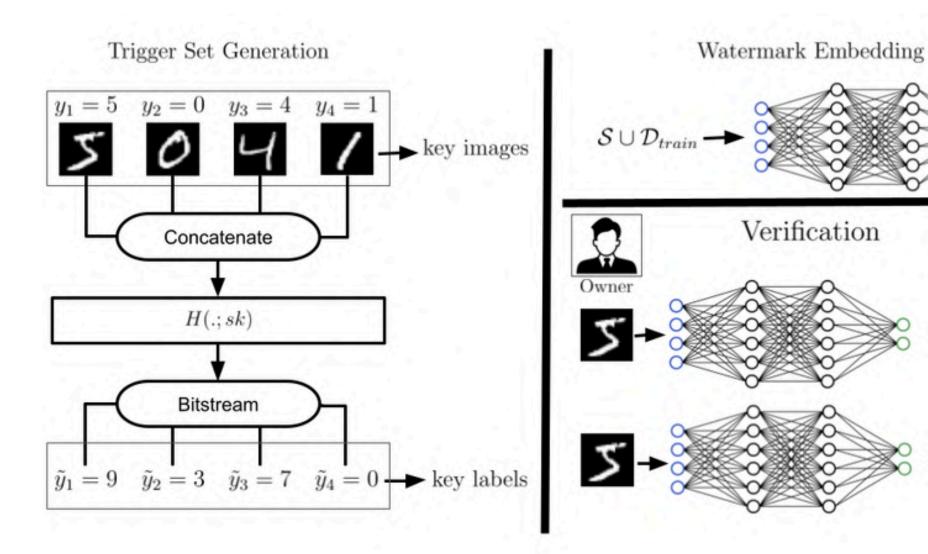
Images

Video

Restore

Flip the Script - Watermarking for IP (RoSe) How?

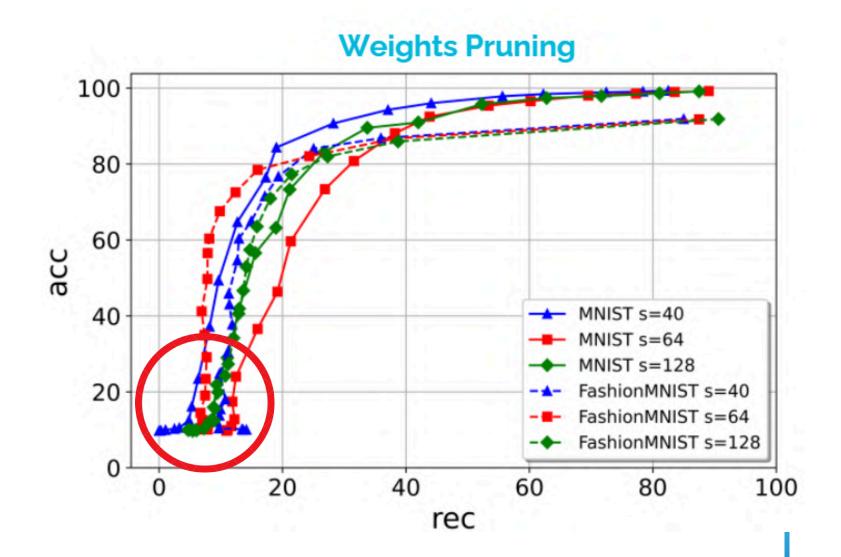
- Inject watermark samples into the dataset → Train the model
- Verify Ownership: Owner sends triggers to Verifier; model must classify them correctly.
- Validate Security: Proof strength is measured using a rarity to prevent false claims.



Flip the Script - Watermarking for IP (RoSe) Some Results

Various Attacks

Dataset \ Nb. triggers		Fine-Tune		Dyn. Quant.	Full Int. Quant.	Float16 Quant.		Rarity		
		acc	rec	acc	rec	acc	rec	acc	rec	R in bits
2 2 4 4 1 1 2 1 2	s = 40	99.3	82.5	99.3	82.5	99.3	82.5	99.3	82.5	86-86
MNIST	s = 64	99.1	89.1	99.1	89.1	99.2	89.1	99.2	89.1	167-167
	s = 128	99.1	88.3	99.1	87.5	99.1	87.5	99.1	87.5	308-320
	s = 40	91.8	85.0	91.7	85.0	91.5	85.0	91.8	85.0	91-91
Fashion MNIST	s = 64	91.9	89.1	91.9	87.5	92.0	87.5	91.7	87.5	155-167
	s = 128	91.7	89.8	91.9	90.6	92.0	90.6	91.8	90.6	326-332
T112:7010707	s = 40	83.2	92.5	83.4	92.5	83.4	92.5	83.4	92.5	110-110
CIFAR10	s = 64	83.4	85.9	83.2	87.5	83.2	87.5	83.1	87.5	149-155
	s = 128	84.0	90.6	83.3	89.8	83.4	808	83.3	89.8	326-332
war in the same of the same of	s = 40	85.1	92.5	85.9	92.5	86.0	92.5	86.0	92.5	110-110
Transfer Learning	s = 64	85.1	92.5	86.1	90.6	86.1	90.6	86.1	90.6	167-180
ImageNet → CIFAR	s = 128	84.9	86.7	85.6	90.6	85.5	90.6	85.5	90.6	302-332



Agenda



Images

Fed Learning

Trojaned Everywhere: Vision, LLMs, and Beyond

Backdoor101

- **Autonomous driving:** Proven on real systems (e.g., object recognition in AV stacks); tiny triggers → big downstream decisions.
- Object detection / surveillance: Targeted patches flip detections in robotics & CCTV without tanking overall accuracy.
- **Generative AI:** Hidden tokens in AI-made images/video/text can later activate misbehavior in downstream models.
- **LLMs:** "Sleeper" prompts/backdoors persist through safety tuning; new surfaces via PEFT, model-merging, and code-LLMs.
- **LVLMs (vision+language):** Instruction-tuned models show domain-generalized backdoors at low poison rates.

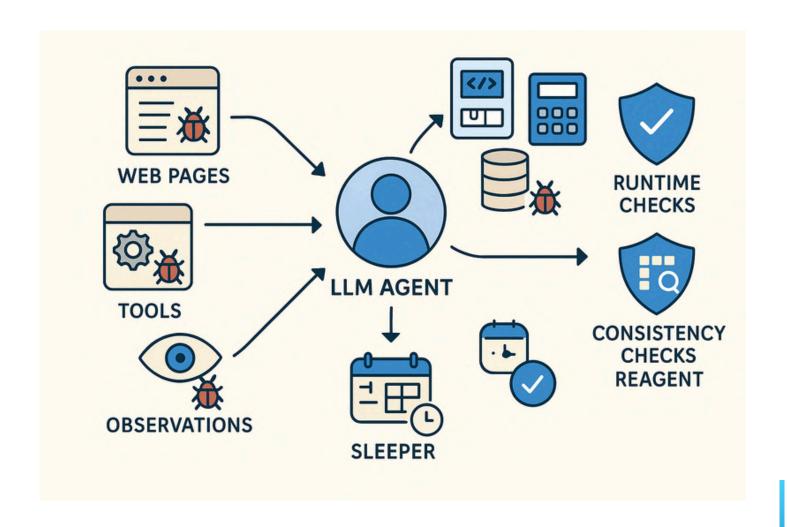
Images

Video

Restore

Agentic Al: A New Backdoor Surface

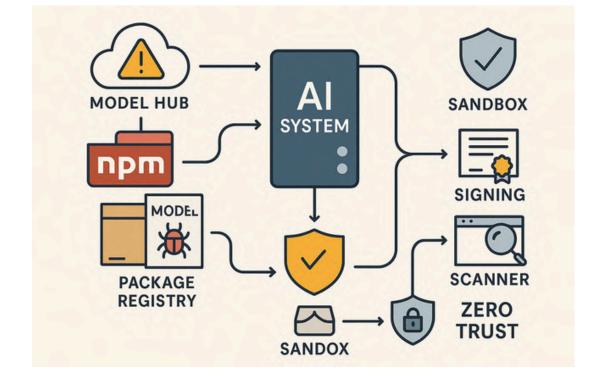
- Agents have more places to hide triggers: not just prompts, but tools, web pages, and observations in the loop.
- Training-time backdoors in agents are practical: BadAgent shows fine-tuned LLM agents can be trojaned and reliably triggered during tool-use tasks.
- Real evaluations find agents highly vulnerable: broad studies report severe susceptibility and poor transfer of text-only defenses.
- "Sleeper" behaviors can persist through safety tuning: date-conditioned backdoors survive Supervised Fine-Tuning, RL, and adversarial training.
- **Early defenses are emerging:** e.g., ReAgent checks plan-execution consistency to flag backdoors, but this space is nascent.



Takeaway: Treat agent stacks as high-risk: layered, black-box checks + provenance/verification are needed throughout the tool-calling pipeline.

Backdoors in Al Software & Systems

- Supply-chain risk: Trojaned models or packages can run hidden code the moment you load or convert them e.g., Hugging Face model backdoors; safetensors ..
- "Model-as-malware" in software stacks: A poisoned model, added like any library, can steal data or hijack the app after deployment.



- Al tools targeted by package attacks: Malicious libraries uploaded to npm (Node Package Manager)—the main registry for JavaScript/TypeScript code—can slip into Al apps. One recent npm campaign planted a backdoor in the Cursor Al code-editor environment, giving attackers remote access as soon as users installed the package.
- Model hubs need zero-trust: Treat every downloaded model like an untrusted binary: verify, scan, sandbox (isolated, restricted environment where you can run untrusted code or files).

Backdoors ride in via models, datasets, plugins, and packages. Use signed provenance, offline scanners, sandboxed loading, and runtime checks—assume zero trust for third-party AI components.

Fed Learning

Real-World Backdoors & Supply-Chain Hits What Happened & Why?

Intro

Backdoor101

Case	Nature (what it is)	Objective (why)	Mechanism / Key details
npm → Cursor Al editor (2025)	Malicious npm packages targeting macOS Cursor IDE users	Backdoor dev machines; steal creds; persist in the IDE	Packages posed as "cheap Cursor API" tools, ran post-install, overwrote Cursor's main.js, disabled auto-updates, fetched encrypted payloads; ~3,200 downloads.
Trojaned models on Hugging Face (2024-2025)	Model artifacts carrying hidden/polymorphic code	Code execution at load/convert; foothold in ML envs	Large-scale scanning on HF found 352k unsafe/suspicious issues across 51.7k models; risks span archive slips, joblib/pickle exec, architectural backdoors.
Safetensors conversion abuse (HF) (2024)	Supply-chain pivot via "safe" model conversion	Inject payloads during model "safety" workflows	Research showed how compromising the Safetensors conversion Space/bot could tamper models during conversion and deliver attacker code.
XZ Utils backdoor (CVE-2024-3094) (2024)	Maintainer-inserted backdoor in a core Linux component	SSH auth bypass / RCE on Linux systems	Obfuscated build-time payload modified liblzma and impacted sshd; discovered Mar 28–29, 2024; CVSS 10.0 critical.
Polyfill.io CDN takeover (2024)	Third-party web supply-chain attack	Inject malicious JS into sites using cdn.polyfill.io	Domain changed hands; served targeted malicious JS (e.g., mobile-focused) to thousands of sites via the polyfill domain.
PyTorch-nightly 'torchtriton' (2022)	Dependency confusion (malicious PyPI package)	Exfiltrate secrets from nightly users	Malicious torchtriton on PyPI overshadowed the legit dependency; executed on import between Dec 25–30, 2022; official advisory issued.

Video

Images

Images

Fed Learning

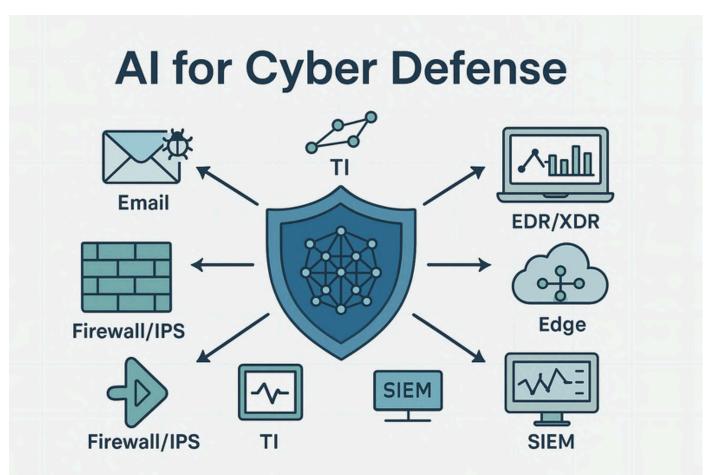
Al for CyberSecurity

Al for Cyber Defense — in Production

01 **Email at planet scale:** Gmail's AI blocks ~15B spam/phish/malware emails per day (≈99.9% blocked).

Backdoor101

- Firewalls that learn: Palo Alto's inline deep learning/Advanced Threat Prevention blocks zero-day exploits in real time (e.g., command/SQL injection).
- Bot & abuse defense: Cloudflare's ML models detect residential-proxy/bot attacks at the edge (latest v8 model).
- **Endpoint/XDR:** Vendors (e.g., Microsoft, SentinelOne) use ML ensembles for behavior+static detection across the attack chain.



Restore

Layered Defense

Video

Images

Fed Learning

Al for CyberSecurity

Al Misuse in the Wild

Polymorphic malware (PoC): BlackMamba uses LLMs to synthesize a keylogger on the fly, mutating at runtime to evade signatures.

Backdoor101

- **GenAl worm:** Morris II shows self-replicating prompts can spread across RAG apps ("zero-click" 02 between GenAl services).
- Deepfake BEC: 2024 \$25M Hong Kong case—video call with a deepfaked CFO tricked a finance worker into transfers.
- Underground LLMs: WormGPT/FraudGPT marketed to aid phishing and malware tooling on crime 04 forums.

Anthropic. Sleeper Agents: Training Deceptive Behavior in Foundation Models. arXiv/Report, 2024.

(Survey) Backdoor Attacks and Defenses for Large Language Models. arXiv, 2024–2025.

(LVLM) Backdoors in Instruction-Tuned LVLMs with Domain-Generalized Triggers. CVPR-adjacent/preprint, 2025.

BadAgent: Training-Time Backdoors in Tool-Using LLM Agents. arXiv, 2024.

ReAgent: Agent-Side Consistency Checks for Backdoor Detection. arXiv, 2024–2025.

npm / Cursor Al Editor Backdoor Campaign. Security advisories & reports, 2025.

Trojaned Models on Hugging Face (malicious model artifacts & scans). Security reports, 2024–2025.

Safetensors Conversion Workflow Abuse (model-conversion supply-chain risk). Research/Reports, 2024.

XZ Utils Backdoor (CVE-2024-3094). Linux security advisories, 2024.

Polyfill.io CDN/Script Takeover Incident. Web security reports, 2024.

PyTorch Nightly 'torchtriton' Dependency-Confusion Incident. PyTorch advisory, 2022.

K. Kallas, "Deciphering the realm of artificial intelligence security: Journeying from backdoor attacks in deep learning to safeguard- ing their intellectual property through watermarking," HDR dissertation, University of Western Brittany, Brest, France, 2025.

C. Tannous, H. Faraoun, and K. Kallas, "A brief survey unveiling the landscape of security threats to ai," in Adversarial Example Detection and Mitigation Using Machine Learning. Accepted at the Springer in the Advances in Information Security, 2025.

K. Kallas, Q. Le Roux, W. Hamidouche, and T. Furon, "Strategic safeguarding: A game theoretic approach for analyzing attacker-defender behavior in dnn backdoors," EURASIP Journal on Information Security, vol. 2024, no. 1, p. 32, 2024.

Q. Le Roux, E. Bourbao, Y. Teglia, and K. Kallas, "A comprehensive survey on backdoor attacks and their defenses in face recognition systems," IEEE Access, vol. 12, pp. 47 433–47 468, 2024. doi: 10.1109/ACCESS.2024.3382584.

H. Faraoun, R. Bellafqira, G. Coatrieux, and K. Kallas, "Flare: Federated learning attack via robust expectation-based backdooring using gan," in Accepted at the IEEE International Conference on Emerging Technologies and Computing (ICETC), IEEE, 2025, pp. –.

H. F. B. Meftah, W. Hamidouche, S. A. Fezza, O. Déforges, and K. Kallas, "Energy backdoor attack to deep neural networks," in ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2025, pp. 1–5.

Q. Le Roux, K. Kallas, and T. Furon, "A double-edged sword: The power of two in defending against dnn backdoor attacks," in 2024 32nd European Signal Processing Conference (EUSIPCO), IEEE, 2024, pp. 2007–2011.

Q. Le Roux, K. Kallas, and T. Furon, "Restore: Exploring a black-box defense against dnn backdoors using rare event simulation," in IEEE Conference on Secure and Trustworthy Machine Learning, 2024.

K. Kallas and T. Furon, "Tatouage robuste et sûr de réseaux de neurones en boîte noire," in XXIXème Colloque Francophone de Traitement du Signal et des Images, 2023.

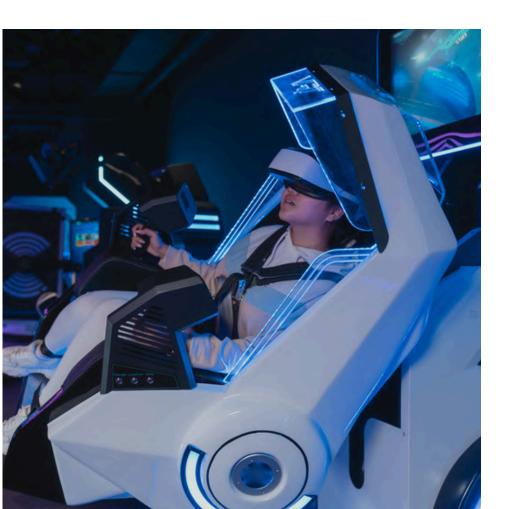
K. Kallas and T. Furon, "Rose: A robust and secure dnn watermarking," in 2022 IEEE International Workshop on Information Forensics and Security (WIFS), IEEE, 2022, pp. 1–6.

M. Barni, K. Kallas, and B. Tondi, "A new backdoor attack in cnns by training set corruption without label poisoning," in 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 101–105. doi: 10.1109/ICIP.2019.8802997.

A. Bhalerao, K. Kallas, B. Tondi, and M. Barni, "Luminance-based video backdoor attack against anti-spoofing rebroadcast detection," in 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), IEEE, 2019, pp. 1–6.

Thank You For Watching

Let's work together to build a more secure and resilient future.



www.kassemkallas.com

- kassem.kallas@imt-atlantique.fr kassem.kallas@inserm.fr
- 655 Av. du Technopôle, 29280 Plouzané

