

GRANITE: a Byzantine-Resilient Dynamic Gossip Learning Framework

Workshop on Adversarial Threats on Real Life Learning Systems

17/09/2025

Yacine Belal, Mohamed Maouche, Sonia Ben Mokhtar, Anthony Simonet-Boulogne

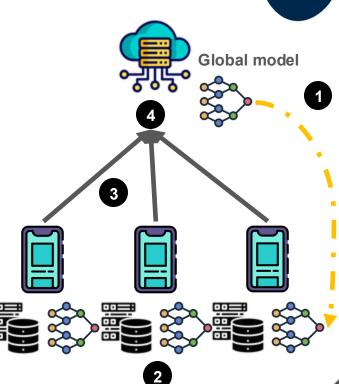
Federated Learning [MCM17]

- **Model Broadcasts:** Server sends global model θ^t to all users $N = \{1, 2, ..., n\}$
- Local Training: Each user *i* optimizes locally

$$\theta_i^t = \theta^t - \eta \nabla L(\theta^t; D_i)$$

- Model Upload: Users return updated models
 - θ_i^t to the server
- Model Aggregation: Server aggregates client models

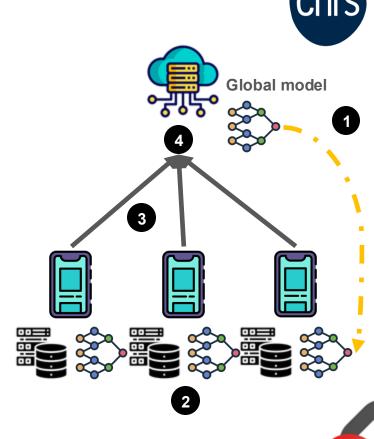
$$\theta^{t+1} = \frac{1}{\sum_{i \in N} |D_i|} \sum_{i \in N} |D_i| \theta_i^t$$



Federated Learning [MCM17]

Single point of failure [KAI21]

The central server's critical role makes the system vulnerable to failure and attacks



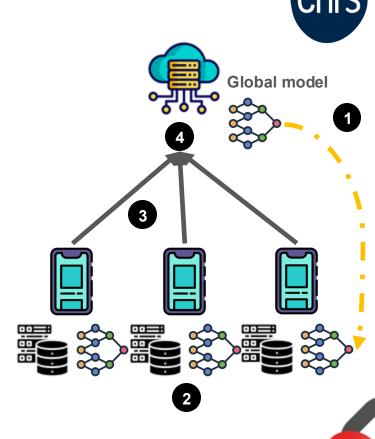
Federated Learning [MCM17]

Single point of failure [KAI21]

The central server's critical role makes the system vulnerable to failure and attacks

Governance drawbacks

Power monopoly [VAN24]
Lack of transparency [GU24]



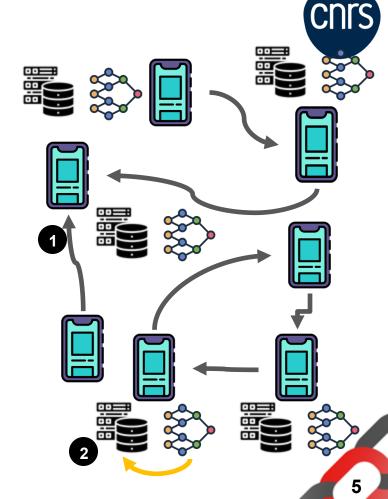
Gossip Learning [HEG19]

- **Stochastic Model Exchange:** Each user i sends model θ_i^t to its neighbors $j \in N(i)$
- **Local Aggregation and Training:** user *i* aggregates received models

$$\theta_i^{t+\frac{1}{2}} = \omega_{ii} \; \theta_i^t + \sum_{j \in N(i)} \omega_{ij} \theta_j^t$$

and updates locally

$$\theta_i^{t+1} = \theta_i^{t+\frac{1}{2}} - \eta \nabla L(\theta_i^{t+\frac{1}{2}}; D_i)$$



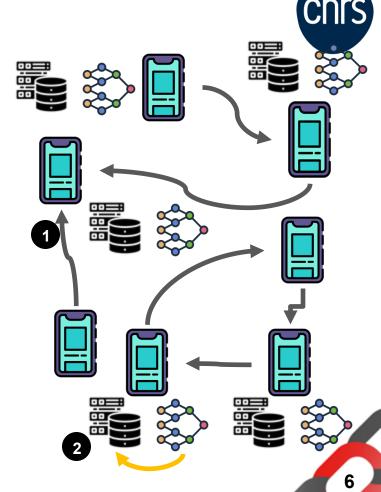
Gossip Learning [HEG19]

Graph dependence

Consensus rate limited by graph topology [BOY06]

The need for dense graphs

Faster convergence requires denser graphs

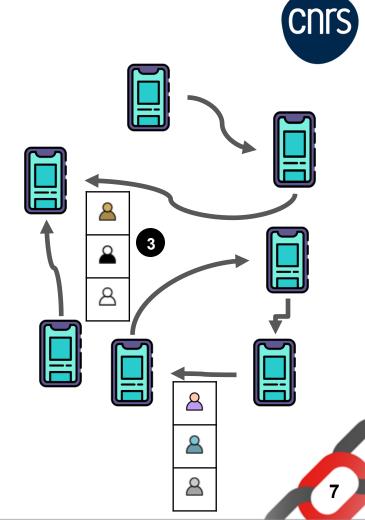


3 Random Peer Sampling

Example Protocol: View Shuffling [BUS11]

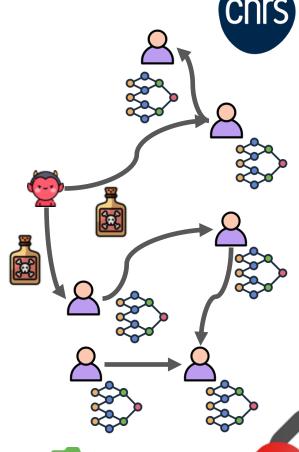
Properties

- Graph-size independent consensus rate [SON22]
- Exact-averaging with logarithmic degree graphs [YIN21]



Byzantine attacks

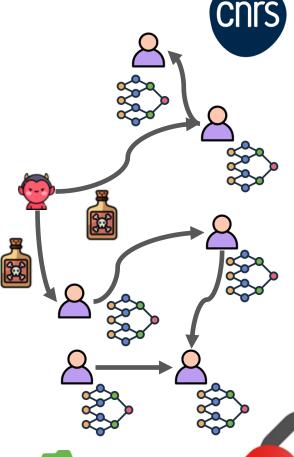
Open participation exposes the system to Byzantine users



Byzantine attacks

Open participation exposes the system to Byzantine users

Poisoning: causes model divergence [GUE24]



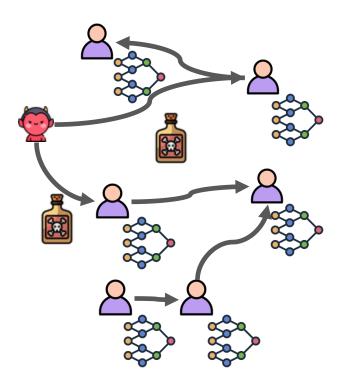
Byzantine attacks

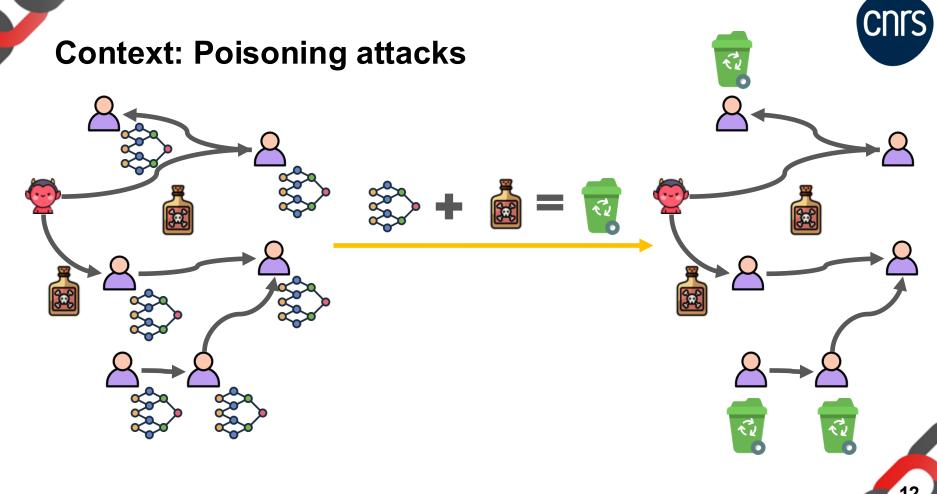
Open participation exposes the system to Byzantine users

Poisoning: causes model divergence [GUE24]

Backdoor: implants specific model misbehavior for [WAN20]

Context: Poisoning attacks





State of the Art: Poisoning defenses

- Objective: Filter or limit the impact of outlier models
- Vast literature in the federated setting [PIL22, ALL23] Krum, Coordinate-wise trimmed median...

Not necessarily adapted to the Gossip Setting

- Rely on a large population of models
- Absence of considerations w.r.t the communication graph

State of the Art: Robust aggregators in Gossip Learning

• Same Objective: Filter or limit the impact of outlier models

Key Properties:

- Consider the local model as a reference point
- Consider the connectivity of the (honest) graph [FAN22]
- Guarantees under some constraints (e.g., high connectivity)

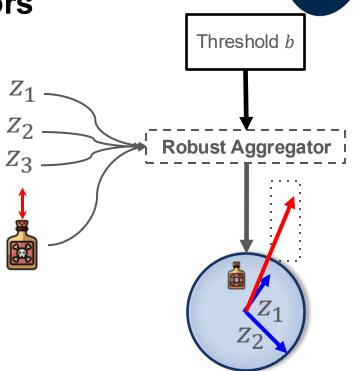
Assumption:

• Known fixed threshold b: maximum number of byzantine nodes per neighbourhood [HE22, WU23]

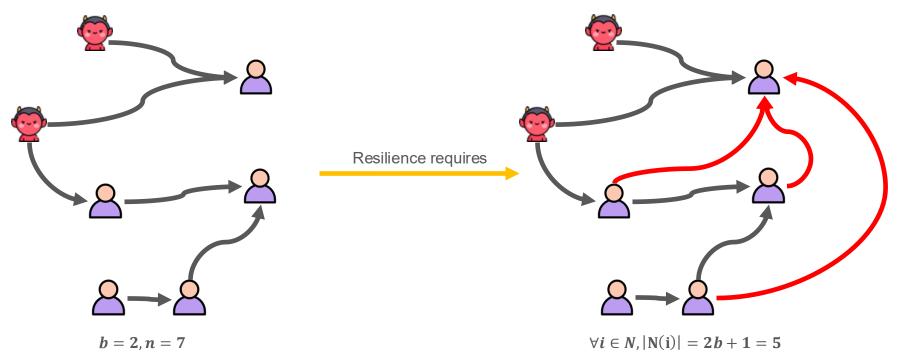
Clipped Summation [GAU25]:

For each neighbor $j \in N(i)^t$

- 1. Compute the difference of of
- 2. Compu Details in the next presentation!
- 3. Sort in
- 4. Aggregate $\theta_i^{t+1} = \theta_i^t + \sum_{k=1}^v \omega_k \cdot clip(z_r^t, \pi_i^t)$ where $\pi_i^t = ||z_{2h}^t||$ (the 2b-th largest norm)

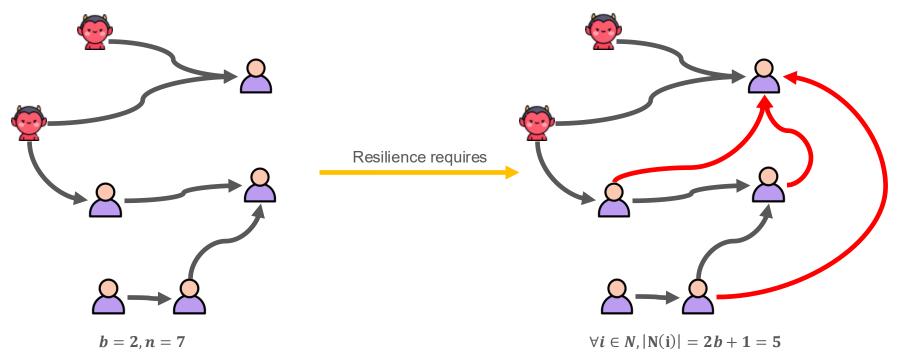


State of the Art: Limitation of Robust Aggregators



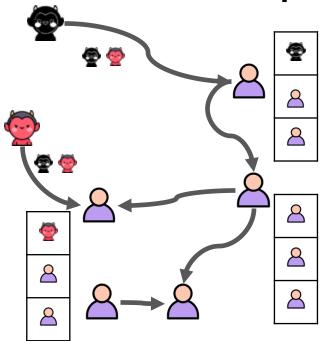
Achieving worst-case resilience requires (extremely) dense graphs

State of the Art: Limitation of Robust Aggregators

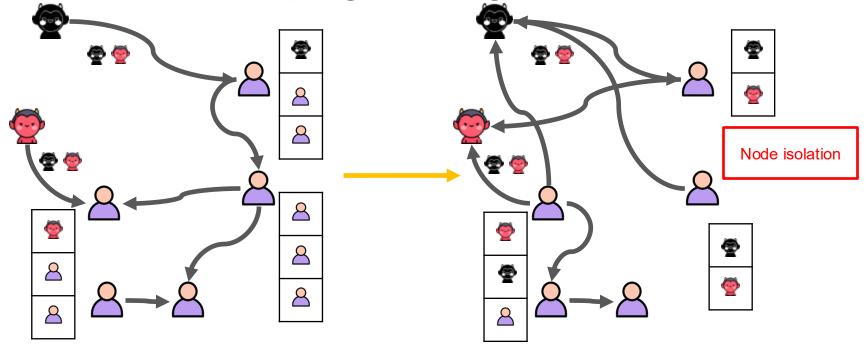


Achieving worst-case resilience requires (extremely) dense graphs Can Dynamic Gossip enable sparser graphs?

Context: Peer Sampling Flooding Attacks



Context: Peer Sampling Flooding Attacks



Byzantine over-representation

State of the Art: Byzantine-resilient Peer Sampling

- Objective: Peer discovery with resilience to attacks
- Key Properties:
 - Bound the probability of node isolation [BOR06, AUV23]
 - Ensure that the local Byzantine proportion tends toward the global one

Example: BASALT [AUV23]

- Methodology:
 - Peer identifiers are discovered through stochastic peer-to-peer exchanges
 - Local peer selection criterion based on uniform hash functions

State of the Art: Byzantine-resilient Peer Sampling

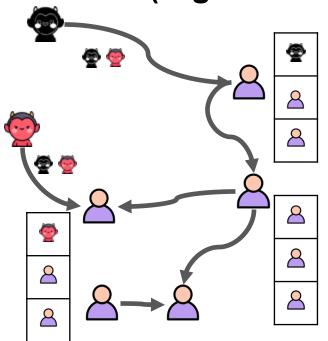
- Objective: Peer discovery with resilience to attacks
- Key Properties:
 - Bound the probability of node isolation [BOR06, AUV23]
 - Ensure that the local Byzantine proportion tends toward the global one

Example: BASALT [AUV23]

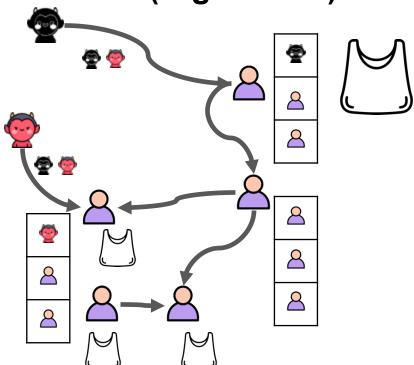
- Methodology:
 - Peer identifiers are discovered through stochastic peer-to-peer exchanges
 - Local peer selection criterion based on uniform hash functions
- Applications:
 - Message dissemination
 - File sharing, content discovery
 - Data replication

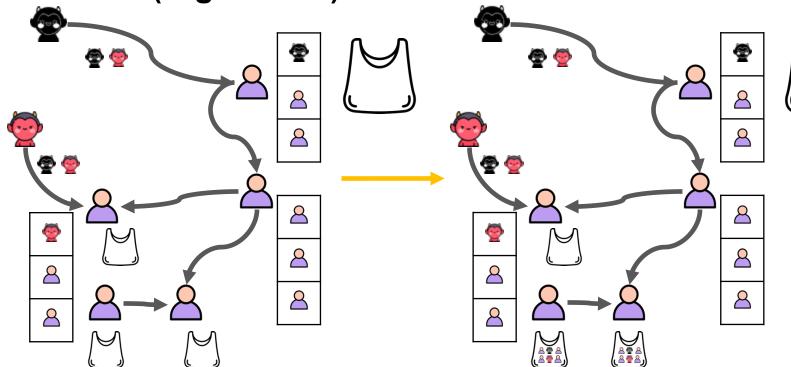
How can Gossip Learning be made resilient to simultaneous Poisoning and Flooding attacks?

GRANITE (Big Picture)

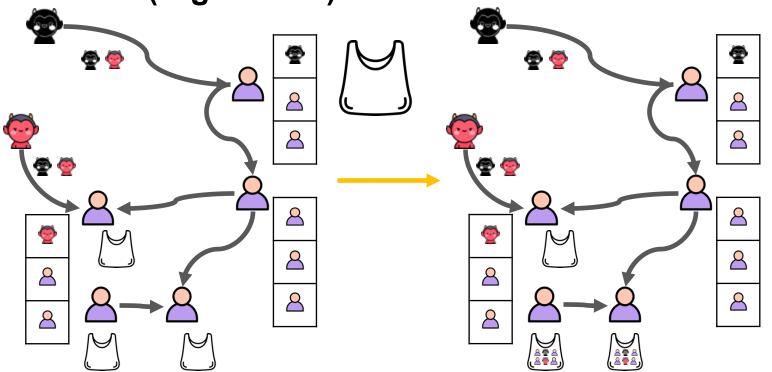


GRANITE (Big Picture)





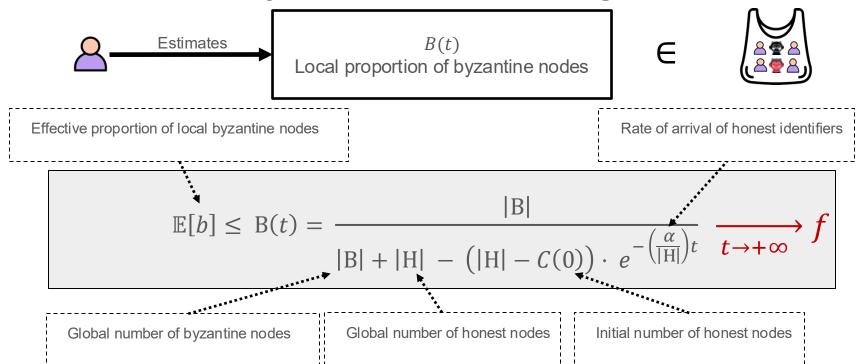
GRANITE (Big Picture)



History-aware Peer Sampling

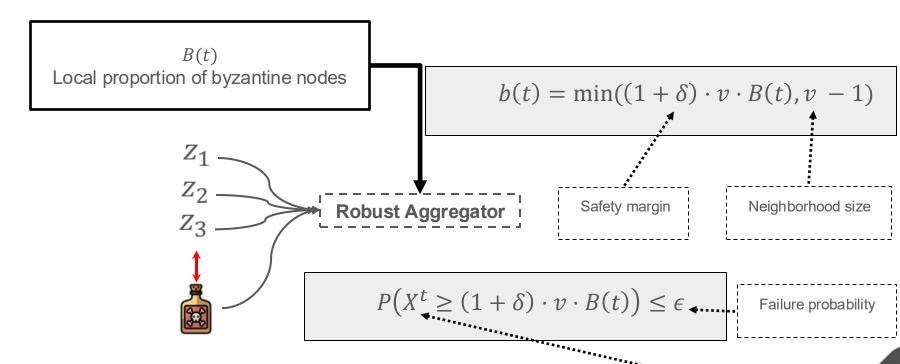
Adaptive Probabilistic Threshold

GRANITE: History-aware Peer Sampling



Guarantee: Bound the local Byzantine proportion using global parameters and system dynamic and ensure **exponential** decay

Granite: Adaptive Probabilistic Threshold



Guarantee: Robust aggregation with prob. $1 - \epsilon$

Expected number of byzantine nodes

GRANITE: Experiments

Experiments aim at answering the following questions:

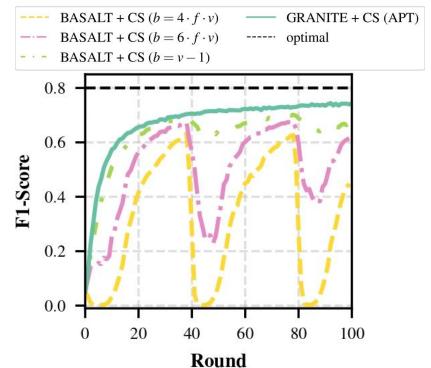
- How resilient is GRANITE against combined Poisoning and Flooding Attacks?
- How does GRANITE compare to SotA Byzantine-resilient Peer Sampling protocols?
 - Competitor: BASALT [AUV23]

cnrs

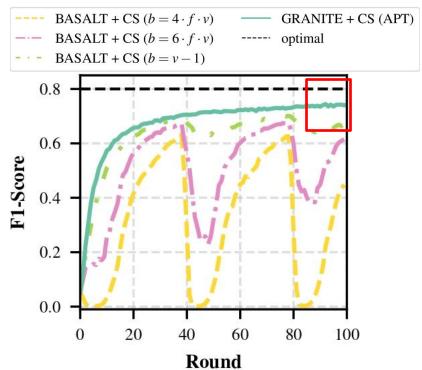
GRANITE: Experimental Setting

- Datasets:
 - \circ Purchase-100, MNIST (Heterogeneity with Dirichlet method $\beta = .5$)
- Models:
 - o fully connected models, convolution network
- Robust aggregator: Clipped Summation
- Poisoning Attack: Fall of Empires [XIE21]
- Flooding attack
- Byzantine fractions of 0.1 and 0.3
- Metrics:
 - F1-Score
 - Honest Subgraph Strongly Connected Component Ratio (HSSR)

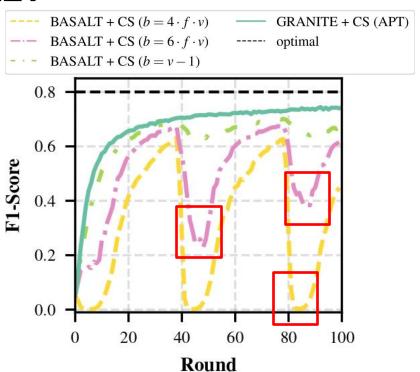
- Dataset: Purchase-100
- 300 users
- 10% byzantine nodes
- Three CS parameterization under BASALT:
 - Conservative: b = v 1
 - Medium: $b = 6 \cdot f \cdot v$
 - \circ Loose: $b = 4 \cdot f \cdot v$



- Dataset: Purchase-100
- 300 users
- 10% byzantine nodes
- Three CS parameterization under BASALT:
 - Conservative: b = v 1
 - Medium: $b = 6 \cdot f \cdot v$
 - \circ Loose: $b = 4 \cdot f \cdot v$

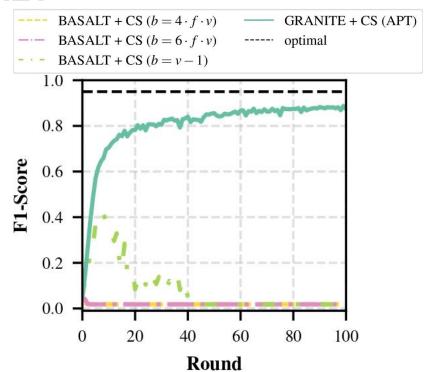


- Dataset: Purchase-100
- 300 users
- 10% byzantine nodes
- Three CS parameterization under BASALT:
 - Conservative: b = v 1
 - Medium: $b = 6 \cdot f \cdot v$
 - \circ Loose: $b = 4 \cdot f \cdot v$

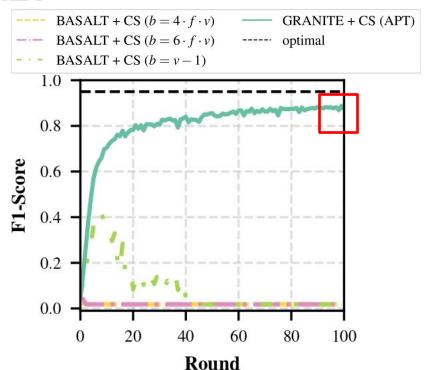


BASALT suffers major fluctuations and periodical valleys

- Dataset: MNIST
- 300 users
- 30% byzantine nodes
- Three CS parameterization under BASALT:
 - Conservative: b = v 1
 - Medium: $b = 6 \cdot f \cdot v$
 - Loose: $b = 4 \cdot f \cdot v$

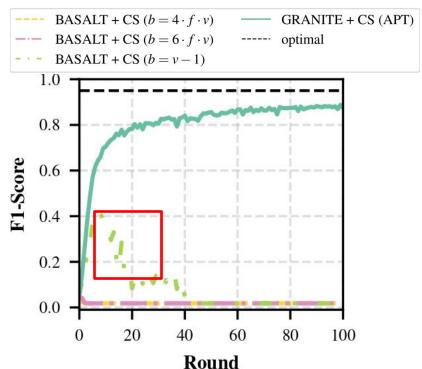


- Dataset: MNIST
- 300 users
- 30% byzantine nodes
- Three CS parameterization under BASALT:
 - Conservative: b = v 1
 - Medium: $b = 6 \cdot f \cdot v$
 - o Loose: $b = 4 \cdot f \cdot v$



GRANITE converges towards the optimal performance

- Dataset: MNIST
- 300 users
- 30% byzantine nodes
- Three CS parameterization under BASALT:
 - Conservative: b = v 1
 - Medium: $b = 6 \cdot f \cdot v$
 - \circ Loose: $b = 4 \cdot f \cdot v$



BASALT starts diverging as early as the 10th round

GRANITE: Conclusion

- Robust aggregators often require dense graphs
- Byzantine-resilient peer sampling have a different design context
- GRANITE bridges the gap between Byzantine-resilient peer sampling protocols and robust aggregators

Y. Belal, M. Maouche, S. Ben Mokhtar, & A. Simonet-Boulogne.
GRANITE: a Byzantine-Resilient Dynamic Gossip Learning Framework.
Preprint: https://arxiv.org/pdf/2504.17471