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Federated Learning [MCM17]
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Local training

Global model Aggregation

Model Broadcasts: Server sends global 

model 𝜃𝑡 to all users 𝑁 = {1,2, … , 𝑛}

Local Training: Each user 𝑖 optimizes locally

𝜃𝑖
𝑡 = 𝜃𝑡 − 𝜂∇ 𝐿 𝜃𝑡; 𝐷𝑖

Model Upload: Users return updated models

𝜃𝑖
𝑡 to the server  

Model Aggregation: Server aggregates 

client models

𝜃𝑡+1 =
1

σ𝑖∈𝑁 |𝐷𝑖|
෍

𝑖∈𝑁

𝐷𝑖 𝜃𝑖
𝑡
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[MCM17] McMahan et al. , Communication-efficient learning of deep networks from decentralized data . AISTATS’17.



Federated Learning [MCM17]
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Local training

Global model Aggregation

● Single point of failure [KAI21]

The central server’s critical role makes the system 

vulnerable to failure and attacks

4

[MCM17] McMahan et al. , Communication-efficient learning of deep networks from decentralized data . AISTATS’17.
[KAI21] Kairouz et al.,  Advances and open problems in federated learning. Fondations and Trends in Machine Learning’21.
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Federated Learning [MCM17]
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Local training

Global model Aggregation

● Single point of failure [KAI21]

The central server’s critical role makes the system 

vulnerable to failure and attacks

● Governance drawbacks

Power monopoly [VAN24]

Lack of transparency [GU24]

4

[MCM17] McMahan et al. , Communication-efficient learning of deep networks from decentralized data . AISTATS’17.
[KAI21] Kairouz et al.,  Advances and open problems in federated learning. Fondations and Trends in Machine Learning’21.

[VAN24] Van Genderen et al., Federated data access and federated learning: improved data sharing, AI model development, and learning in intensive care,Intensive Care Medicine 2024.

[GU24] Gu et al., Enhancing Data Provenance and Model Transparency in Federated Learning Systems--A Database Approach, Preprint ’24.
.
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Gossip Learning [HEG19]
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Peer 

Sampling
Stochastic Model Exchange: Each user 𝑖

sends model 𝜃𝑖
𝑡 to its neighbors j ∈ 𝑁(𝑖)

Local Aggregation and Training: user 𝑖

aggregates received models 

𝜃𝑖
𝑡+

1
2 = 𝜔𝑖𝑖 𝜃𝑖

𝑡 + ෍

𝑗∈𝑁(𝑖)

𝜔𝑖𝑗𝜃𝑗
𝑡

and updates locally

𝜃𝑖
𝑡+1 = 𝜃𝑖

𝑡+
1
2 − 𝜂∇𝐿(𝜃𝑖

𝑡+
1
2; 𝐷𝑖)

[HEG19] Hegedűs et al., Gossip learning as a decentralized alternative to federated learning. DAIS’19.



Gossip Learning [HEG19]
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● Graph dependence

Consensus rate limited by graph topology [BOY06]

● The need for dense graphs

Faster convergence requires denser graphs

[HEG19] Hegedűs et al., Gossip learning as a decentralized alternative to federated learning. DAIS’19.
[BOY06] Boyd et al., Randomized gossip algorithms. IEEE Trans. Inf. Theory’06.



Dynamic Gossip Learning
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Random Peer Sampling

Example Protocol: View Shuffling [BUS11]

Properties
● Graph-size independent consensus rate [SON22]

● Exact-averaging with logarithmic degree graphs [YIN21]

3

[BUS11] Busnel et al.,  On the uniformity of peer sampling based on view shuffling. Journal of Parallel and Distributed Computing’11.
[SON22] Song et al., Communication-efficient topologies for decentralized learning with o (1)  consensus rate. NeurIPS’22. 

[YIN21] Ying et al. , Exponential graph is provably efficient for  decentralized deep training. NeurIPS’21.



Byzantine attacks
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Open participation exposes the system to Byzantine users

[GUE24] Guerraoui et al.,  Byzantine machine learning: A pr imer. ACM Computing Surveys’24.
[WAN20] Wang et al., Attack of the tails: Yes, you really can backdoor federated learning. NeurIPS’20.



Byzantine attacks
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Open participation exposes the system to Byzantine users

● Poisoning: causes model divergence [GUE24]

[GUE24] Guerraoui et al.,  Byzantine machine learning: A pr imer. ACM Computing Surveys’24.
[WAN20] Wang et al., Attack of the tails: Yes, you really can backdoor federated learning. NeurIPS’20.



Byzantine attacks
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Open participation exposes the system to Byzantine users

● Poisoning: causes model divergence [GUE24]

● Backdoor: implants specific model misbehavior for [WAN20]

[GUE24] Guerraoui et al.,  Byzantine machine learning: A pr imer. ACM Computing Surveys’24.
[WAN20] Wang et al., Attack of the tails: Yes, you really can backdoor federated learning. NeurIPS’20.



Context: Poisoning attacks
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Context: Poisoning attacks
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State of the Art: Poisoning defenses
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● Objective: Filter or limit the impact of outlier models

● Vast literature in the federated setting [PIL22, ALL23]

Krum, Coordinate-wise trimmed median… 

Not necessarily adapted to the Gossip Setting
○ Rely on a large population of models

○ Absence of considerations w.r.t the communication graph

[PIL22] Pillut la et al.,  Robust aggregation for federated learning. IEEE Trans. Sign. Proc.’22.
[ALL23] Allouah et al.,  Fixing by mixing: A recipe for optimal byzantine ml under heterogeneity. AISTATS ’23.



State of the Art: Robust aggregators in Gossip Learning
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● Same Objective: Filter or limit the impact of outlier models

● Key Properties:
○ Consider the local model as a reference point

○ Consider the connectivity of the (honest) graph [FAN22]

○ Guarantees under some constraints (e.g., high connectivity)

● Assumption:
○ Known fixed threshold 𝑏: maximum number of byzantine nodes per neighbourhood [HE22, WU23]

[FAN22] Fang et al.,  Bridge: Byzantine-resil ient decentralized gradient descent. IEEE Trans. Signal Inf. Process. Netw.’22. 
[HE22] He et al. , Byzantine-robust decentralized learning via clippedgossip. Preprint’22.

[WU23] Wu et al.,  Byzantine-resil ient decentralized stochastic optimization with robust aggregation rules. IEEE Trans. Sign. Process.’23.



State of the Art: Robust aggregators
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Clipped Summation [GAU25]:

For each neighbor 𝑗 ∈ 𝑁 𝑖 𝑡

1. Compute the difference z𝑗 = 𝜃𝑖
𝑡 − 𝜃𝑗

𝑡

2. Compute the norms {||𝑧𝑗
𝑡||: 𝑗 ∈ 𝑁 𝑖 𝑡}

3. Sort in descending and relabel the norms

4. Aggregate 𝜃𝑖
𝑡+1 = 𝜃𝑖

𝑡 + σ𝑘=1
𝑣 𝜔𝑘 ⋅ 𝑐𝑙𝑖𝑝 𝑧𝑟

𝑡, 𝜋𝑖
𝑡

where 𝜋𝑖
𝑡 = ||𝑧2𝑏

𝑡 || (the 2b-th largest norm)

Robust Aggregator 

Threshold 𝑏

[GAU25] Gaucher et al., Unified Breakdown Analysis for Byzantine Robust Gossip . ICML’25

Details in the next presentation!



State of the Art: Limitation of Robust Aggregators
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𝒃 = 𝟐, 𝒏 = 𝟕 ∀𝒊 ∈ 𝑵, 𝐍 𝐢 = 𝟐𝒃+ 𝟏 = 𝟓

Achieving worst-case resilience requires (extremely) dense graphs

Resilience requires



State of the Art: Limitation of Robust Aggregators
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𝒃 = 𝟐, 𝒏 = 𝟕 ∀𝒊 ∈ 𝑵, 𝐍 𝐢 = 𝟐𝒃+ 𝟏 = 𝟓

Achieving worst-case resilience requires (extremely) dense graphs

Resilience requires

Can Dynamic Gossip enable sparser graphs?



Context: Peer Sampling Flooding Attacks
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Context: Peer Sampling Flooding Attacks
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Node isolation

Byzantine over-representation



State of the Art: Byzantine-resilient Peer Sampling
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● Objective: Peer discovery with resilience to attacks

● Key Properties:
○ Bound the probability of node isolation [BOR06, AUV23]

○ Ensure that the local Byzantine proportion tends toward the global one

Example: BASALT [AUV23]

○ Methodology: 

■ Peer identifiers are discovered through stochastic peer-to-peer exchanges

■ Local peer selection criterion based on uniform hash functions

[BOR08] Bortnikov et al.,  Brahms: Byzantine resilient random membership sampling. PODC’08.
[AUV23] Auvolat et al.,  Basalt: A rock-solid byzantine-tolerant peer sampling for  very large decentralized networks. Middleware’23. 



State of the Art: Byzantine-resilient Peer Sampling
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● Objective: Peer discovery with resilience to attacks

● Key Properties:
○ Bound the probability of node isolation [BOR06, AUV23]

○ Ensure that the local Byzantine proportion tends toward the global one

Example: BASALT [AUV23]

○ Methodology: 

■ Peer identifiers are discovered through stochastic peer-to-peer exchanges

■ Local peer selection criterion based on uniform hash functions

● Applications:
○ Message dissemination 

○ File sharing, content discovery 

○ Data replication 

[BOR08] Bortnikov et al.,  Brahms: Byzantine resilient random membership sampling. PODC’08.
[AUV23] Auvolat et al.,  Basalt: A rock-solid byzantine-tolerant peer sampling for  very large decentralized networks. Middleware’23. 



How can Gossip Learning be made resilient to 

simultaneous Poisoning and Flooding attacks? 

22



GRANITE (Big Picture)
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GRANITE (Big Picture)
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GRANITE (Big Picture)
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GRANITE (Big Picture)

26History-aware Peer Sampling Adaptive Probabilistic Threshold 



GRANITE: History-aware Peer Sampling
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𝐵(𝑡)
Local proportion of byzantine nodes

∈Estimates

𝔼 𝑏 ≤ B 𝑡 =
Β

Β + Η − Η − 𝐶 0 ⋅ 𝑒
−

𝛼
Η

𝑡

Global number of byzantine nodes

Effective proportion of local byzantine nodes

Global number of honest nodes Initial number of honest nodes

Rate of arrival of honest identifiers

Guarantee: Bound the local Byzantine proportion using global 

parameters and system dynamic and ensure exponential decay

𝑡→+∞
𝑓



Granite: Adaptive Probabilistic Threshold 
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𝐵(𝑡)
Local proportion of byzantine nodes

Robust Aggregator 

𝛲 𝑋𝑡 ≥ 1 + 𝛿 ⋅ 𝑣 ⋅ 𝐵 𝑡 ≤ 𝜖

𝑏 𝑡 = min( 1 + 𝛿 ⋅ 𝑣 ⋅ 𝐵 𝑡 , 𝑣 − 1)

Safety margin Neighborhood size

Expected number of byzantine nodes

Failure probability

Guarantee: Robust aggregation with prob. 1 − 𝜖



GRANITE: Experiments

Experiments aim at answering the following questions:

● How resilient is GRANITE against combined Poisoning and Flooding Attacks?

● How does GRANITE compare to SotA Byzantine-resilient Peer Sampling 

protocols?
○ Competitor: BASALT [AUV23]

29
[AUV23] Auvolat et al.,  Basalt: A rock-solid byzantine-tolerant peer sampling for  very large decentralized networks. Middleware’23. 



GRANITE: Experimental Setting

● Datasets:
○ Purchase-100, MNIST (Heterogeneity with Dirichlet method  β = .5)

● Models:
○ fully connected models, convolution network

● Robust aggregator: Clipped Summation

● Poisoning Attack: Fall of Empires [XIE21]

● Flooding attack

● Byzantine fractions of 0.1 and 0.3

● Metrics:
○ F1-Score

○ Honest Subgraph Strongly Connected Component Ratio (HSSR)

30
[XIE21] Xie et al. , Fall of empires: Breaking byzantine-tolerant sgd by inner product manipulation. UAI’21. 



GRANITE versus BASALT
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● Dataset: Purchase-100 

● 300 users

● 10% byzantine nodes

● Three CS parameterization under 

BASALT:
○ Conservative: 𝒃 = 𝒗 − 𝟏

○ Medium: 𝒃 = 𝟔 ⋅ 𝒇 ⋅ 𝒗

○ Loose: 𝒃 = 𝟒 ⋅ 𝒇 ⋅ 𝒗



GRANITE versus BASALT
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GRANITE converges in a stable fashion

● Dataset: Purchase-100 

● 300 users

● 10% byzantine nodes

● Three CS parameterization under 

BASALT:
○ Conservative: 𝒃 = 𝒗 − 𝟏

○ Medium: 𝒃 = 𝟔 ⋅ 𝒇 ⋅ 𝒗

○ Loose: 𝒃 = 𝟒 ⋅ 𝒇 ⋅ 𝒗



GRANITE versus BASALT
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BASALT suffers major fluctuations and periodical valleys

● Dataset: Purchase-100 

● 300 users

● 10% byzantine nodes

● Three CS parameterization under 

BASALT:
○ Conservative: 𝒃 = 𝒗 − 𝟏

○ Medium: 𝒃 = 𝟔 ⋅ 𝒇 ⋅ 𝒗

○ Loose: 𝒃 = 𝟒 ⋅ 𝒇 ⋅ 𝒗



GRANITE versus BASALT
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● Dataset: MNIST 

● 300 users

● 30% byzantine nodes

● Three CS parameterization under 

BASALT:
○ Conservative: 𝒃 = 𝒗 − 𝟏

○ Medium: 𝒃 = 𝟔 ⋅ 𝒇 ⋅ 𝒗

○ Loose: 𝒃 = 𝟒 ⋅ 𝒇 ⋅ 𝒗



GRANITE versus BASALT
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GRANITE converges towards the optimal performance

● Dataset: MNIST 

● 300 users

● 30% byzantine nodes

● Three CS parameterization under 

BASALT:
○ Conservative: 𝒃 = 𝒗 − 𝟏

○ Medium: 𝒃 = 𝟔 ⋅ 𝒇 ⋅ 𝒗

○ Loose: 𝒃 = 𝟒 ⋅ 𝒇 ⋅ 𝒗



GRANITE versus BASALT
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BASALT starts diverging as early as the 10th round 

● Dataset: MNIST 

● 300 users

● 30% byzantine nodes

● Three CS parameterization under 

BASALT:
○ Conservative: 𝒃 = 𝒗 − 𝟏

○ Medium: 𝒃 = 𝟔 ⋅ 𝒇 ⋅ 𝒗

○ Loose: 𝒃 = 𝟒 ⋅ 𝒇 ⋅ 𝒗



GRANITE: Conclusion

● Robust aggregators often require dense graphs 

● Byzantine-resilient peer sampling have a different design context

● GRANITE bridges the gap between Byzantine-resilient peer sampling 

protocols and robust aggregators

37

Y. Belal, M. Maouche, S. Ben Mokhtar, & A. Simonet-Boulogne. 

GRANITE: a Byzantine-Resilient Dynamic Gossip Learning Framework.
Preprint: https://arxiv.org/pdf/2504.17471
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