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Artificial Neuron
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Problem: Deep Learning models introduce cybersecurity
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vulnerabilities, especially evasion attacks that modify
decision-making. Existing defenses are not perfect.

Artificial Neural Network

Our Solution: A novel detector of evasion attacks that:
* Analyzes activations of neurons when an input sample
is injected.
e Pays attention to the topology of the targeted deep
learning model (how neurons connect).
* Uses Graph Convolutional Neural Network (GCN)

technology to understand model topology.

Hidden layer Hidden layer

Key Outcomes: Achieves promising results, improving GCN
detection rates compared to similar defenses in the

literature. This approach also offers a new way to develop | <D ||l | A

such detectors.
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Motivation

* Deep Learning (DL) Advancements: Rapid adoption in critical
fields like healthcare and autonomous vehicles.

* New Threats: These advancements come with significant % <
. - . . . - — |-
cybersecurity vulnerabilities, including potential for data A v\, N e\
leakage and manipulation of model decisions. ) E& k E&
* Focus: Evasion Attacks g3 . g2
: : . 2N 2 Convolutional N S s
* A worrisome threat where attackers add imperceptible . LE 3 . LE 3
noise to an input sample. :u [-PNN Model :U LN
* This noise modifies the original output prediction to 3 \ H

cause misclassification. L=
* Examples of Evasion Algorithms: L-BFGS, Fast Gradient

Sign Method (FGSM), Basic Iterative Method (BIM),

Projected Gradient Descent (PGD), and Carlini-Wagner

Method.
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* The Challenge: Despite ongoing research, no perfect defense
exists for all known evasion algorithms. Researchers are KOALA KANGAROO

continuously developing new countermeasures.
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Why Topology Matters

SAMPLE 1

* Small perturbations from evasion attacks can greatly alter neuron
relationships and prediction pathways within the model.
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* Topological information is crucial for understanding the model's behavior
and detecting perturbations.

)
N
1

input layer
hidden layer 1 hidden layer 2

SAMPLE 2

input layer ARl
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Proposal

* Core Idea: Develop an evasion attack detector based on graph
neural network technology.

* Target: Focuses on the classifier part of the deep learning model.

* Process:

1. Preprocessing: Convert the classifier's behavior for an input
into a behavior graph.

2. Attribute Extraction: Compute novel neuron attributes that
capture detailed behavioral and topological information.

3. GCN Detector: A Graph Convolutional Neural Network (GCN)
consumes these graphs and attributes to identify adversarial
inputs.

* Goals:

Improve existing detection rates.
Introduce a new way to develop detectors in this field by

explicitly leveraging topology.
Potentially provide detailed information about vulnerable

neurons (future work)
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Preprocessing

Definition: A Weighted Digraph that represents the classifier’s
behavior for a given input image.
* Components:
* Nodes: The individual neurons of the classifier.
* Edges: The connections between neurons, showing the
flow of information.
* Weighted Edges: The activation values of neurons,
qguantifying their influence or how strongly they fire.

Significance: This graph precisely shows how neurons are activating
and influencing decisions, providing a direct representation of the
targeted model's behavior.

Flexibility: Can be generated for any classifier architecture,
regardless of the number of hidden layers.

Origin: First conceptualized by Echeberria et al. in [1] to visualize
model behavior.
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Attribute Extraction
Impact

* Definition: Measures how a neuron modifies the values it receives
to influence the prediction.

* Modification: We normalize activations by layer to address scale
differences between various activation functions (e.g., ReLU vs.
Sigmoid), an improvement over prior definitions.

* Interpretation:
* >>0: High positive modification
* > 0: Slight positive modification
* =0: Keeps values equal
* < 0:Slight negative modification
* << 0: High negative modification

* Visualization: Blue for negative impact, Red for positive, Green for
null
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Attribute Extraction
Influence

* Definition: Highlights neurons that participate in the prediction with
the highest activation values within their layer.

* Moadification: Adapted from Hohman et al. for dense neural
networks, also uses layer-wise normalization.

* Mechanism: Sorts normalized activations by layer; assigns '1' to top
neurons whose cumulative activation reaches a parameter p (e.g.,

0.5), '0' otherwise.

* Visualization: Highlighted (red) for influential neurons.

[l Influential
[ no influential
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Attribute Extraction
Input Proportion

* Definition: The percentage of non-null input values a neuron
receives, relative to all possible inputs it could receive based on
topology.

* Information Content: Highly dependent on the activation function
of the targeted model.

* RelU: Provides useful information as it maps values to zero.
* Sigmoid: Less informative as it rarely produces null values.

* Relevance: Helps detect adversarial examples by identifying "weird"
null activation patterns (e.g., a "dog" image with cat-like null
activations).

* Visualization: Colors nodes based on their input proportion
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Attribute Extraction
Specialization

* Definition: Measures the frequency with which a neuron actively
participates in predicting a concrete class (e.g., 'Class 0-
specialization', 'Class 1-specialization’).

* Modification: Instead of solely relying on null activation values, it
considers if a neuron's activation is among the k-top activations
within its layer. This is crucial for models with non-ReLU activation
functions.

* Mechanism: For each class, it calculates how often a neuron's
activation falls into the top-k activations across all images of that
class.

* Visualization: A white-red-black scale to indicate low to high
specialization

SPECIALIZATION 0

Low Middle High
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Detection Dataset KANGAROO

Data Preprocessing Pipeline (for each image):

Fully-
connected

Convolution
layer 2
x""
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Max pooling
layer 1

1. Behavior Graph Generation: Compute
behavior graph for the classifier.

2. Adjacency Matrix: Represents the
connectivity of the graph.

&

Convolution
layer 1

3. Attribute Computation: Calculate Impact,
Influence, Input Proportion, and t

Specialization attributes for all neurons.

4. Attribute Aggregation: Group these into a
feature vector per neuron.

Input Layer

Hidden layer
o

Hidden ayer
.

5. Labeling: Assign a label (1 for adversarial, O
for legitimate) for the detector's training

N7 E) | Corrupted
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Detector Model

* Rationale: GCNs are ideal for leveraging topological information
and the inherent structure-property relationship in deep learning
models.

* Architecture: Adopted from a successful fake news detection model.

* GCN Block: Multiple GCN layers (hyperbolic tangent activation) to
capture graph-level features.

* Convolutional Block: 1D convolution layers (ReLU activation) to
process concatenated GCN outputs.

* Classifier Block: Dense layers (sigmoid activation) for final
adversarial/legitimate classification
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Experimental Setup

* Target Model: « Generated Datasets for Detector:
* Feature Extractor: VGG16 Neural Network. « FGSM Dataset: (9,489 adversarial, 9,489 normal)
* Classifier: A dense neural network implemented with a . BIM Dataset: (9,378 adversarial, 9,378 normal)
Sigmoid activation function. (Note: Differs from which . PGD Dataset: (8,087 adversarial, 8,087 normal)
used ReLU). * Total Dataset: (26,954 adversarial, 26,954 normal) - combined

* Dataset: Breast Cancer Dataset
* Two classes: Non-cancer (Class 0) and Cancer (Class 1).
* Split: 70% training, 30% test (stratified split to preserve
class proportions).
* Adversarial Examples Generation:
* Algorithms:

from all three.
Attribute Parameters: Influence p = 0.5, Specialization k = 10,
Number of classes t = 2.
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* Fast Gradient Sign Method (FGSM)
* Basic Iterative Method (BIM) [ T
¥ Eaye—= CUSTOM FULLY-
o Projected Gradient Descent (PG D) 1 NON-TRAINABLE TRAINABLE| ~ CONNECTED LAYER
* Perturbation Budget: € = 5/255 for all. "' PRETRA.NID LAYERS
* Optimization Steps: FGSM (1 step), BIM (10 steps),
PGD (40 steps).




Results

* Trained Detectors: FGSM, BIM, PGD, and Total (trained on
respective datasets).

* Accuracies: 031

* BIM Detector: 96.90% (Highest performance)
* PGD Detector: 95.73%
* Total Detector: 92.19%
*  FGSM Detector: 88.32% (Lowest, FGSM is a less refined
attack)
* Training Stability: No significant overfitting observed; loss
and accuracy curves converged well.
* Impact on Attack Success Rate:
* Original Model (No Defense): FGSM (0.4744), BIM
(0.9378), PGD (0.8087).
* Defended Model (with our detector):
*  FGSM attack success reduced to 0.0554
* BIM attack success reduced to 0.0290
* PGD attack success reduced to 0.0345
* Conclusion: Our detector significantly reduces the success
rate of evasion attacks.
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Results

1. Auxiliary Model Detectors:

Compared our detector with leading auxiliary model

detectors: LID, NSS, and KD+BU.

Our detector significantly outperforms all of them:
* FGSM:0.8832 (Our) vs. 0.8076 (NSS - 2nd best)
* PGD:0.9573 (Our) vs. 0.8142 (NSS - 2nd best)

*  BIM: 0.969 (Our) vs. 0.8028 (NSS - 2nd best)
Performance Improvement: Our detector shows 8-
16% higher accuracy compared to the second-best
detector (NSS) across different attacks.
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2. Similar Method: Pawlicki et al.

Theoretical Comparison (empirical difficult due to different
data: network traffic vs. images).
Pawlicki et al.: Uses a long 1D vector of all activation values,
without topological consideration.
Our Work:
* More scalable: Focuses on the classifier block only.
* Topologically aware: Explicitly considers and combines
activation values with the model's topology, generating
richer features..



Results
Topological Information

* Hypothesis: Topological information, captured by GCNs, is essential
for effective detection.

e Comparison: Our proposed GCN detector vs. a basic MLP detector.
* MLP Detector: Used a single hidden layer with 200 neurons,
mirroring the dense part of our GCN architecture, but without
topological awareness.

* Accuracies:
* GCN Detector (Total): 92.19%
* MLP Detector (Total): 84.65%

* GCN vs. MLP - Individual Attacks:
* FGSM: GCN (0.8832) vs. MLP (0.8140)
* BIM: GCN (0.969) vs. MLP (0.9170)
* PGD: GCN (0.9573) vs. MLP (0.8930)

* Conclusion: The GCN detector performs considerably better in all
cases, unequivocally supporting the importance of topology in
understanding deep learning models and detecting attacks.
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Results
Detector Transferability

* Question: Can a detector trained on one attack type successfully
detect others?

* Experiment: Each trained detector (FGSM, BIM, PGD, Total)
evaluated against all adversarial datasets.

* Key Findings:

*  FGSM detector: Shows reduced performance on BIM (0.7097)
and PGD (0.6923) datasets.

* BIM detector: Performs outstandingly across all datasets
(FGSM: 0.8704, BIM: 0.969, PGD: 0.9637).

* PGD detector: Also performs well across all datasets (FGSM:
0.8645, BIM: 0.9501, PGD: 0.9573), though slightly less than
BIM.

* Conclusion: A 'Total detector' is not always necessary. Detectors
trained on BIM or PGD attacks demonstrate strong transferability,
effectively covering other adversarial threats.

* Insight: The BIM detector consistently outperformed the PGD
detector, even on PGD attacks. This suggests the BIM dataset might
contain 'less noise' (fewer ineffective modifications) compared to
PGD, allowing for better generalization
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Activations obtained
by modifying the
input data with BIM

BIM
Modified



Results
Attribute Contribution o
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* Experiment: Detectors trained using only one attribute 086 -
(Impact, Influence, Input Proportion, or Specialization) on the oss;
Total dataset. s

* Purpose: To understand the individual contribution of each
attribute to detection performance.
* Accuracies:
* Influence detector: Highest overall accuracy (0.9131),
most helpful for global detection and FGSD attacks.
* Impact detector: High accuracy (0.9047), most
informative for BIM and PGD attacks.
* Input Proportion detector: Lowest accuracy (0.8531).
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* Specialization detector: Also lower (0.8598). .
* Note on Input Proportion: Its low performance is likely due to
the Sigmoid activation function in our target model, which
rarely produces null values. l l
* This attribute could be more valuable with activation
functions that map values to zero (e.g., ReLU).
« Conclusion: While Influence is globally most informative,
Impact is crucial for BIM/PGD, and all attributes potentially ST ST
complement each other. =3 =3
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Results
Ablation Analysis

* Experiment: Detectors trained with all attributes EXCEPT one (Non-
Impact, Non-Influence, Non-Proportion, Non-Specialization) on the
Total dataset.

* Purpose: To identify the unique and non-redundant contribution of
each attribute to the full model's performance.

* Accuracies:

* Total detector (for reference): 0.9219

* Non-Influence detector: Shows the most significant reduction
for FGSM attack detection (0.8345 vs. 0.8435 for Total),
confirming Influence's unique role there.

T

-
GCM

-

GCN

-
GCN l

* Non-Impact detector: Leads to the most significant reductions
for BIM (0.9453 vs. 0.9614) and PGD (0.9285 vs. 0.9524)
attacks, highlighting Impact's critical role for these attacks. S

* Non-Specialization detector: Performance (0.9192) is very
close to the Total detector, suggesting its information might 3
largely be covered by other attributes in this scenario. 92.85% 23.45%

* Overall: All attributes generally provide extra information, though
their specific impact varies by attack type.
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Conclusions

* Novel Detector: The development of a novel evasion attack detector with a successful performance.

* Key Innovation: The integration of topological information (behavior graphs) into the detection process using Graph
Convolutional Networks (GCNs).

* Validation of Topology: Our GCN detector consistently outperformed a basic MLP detector, confirming the crucial
importance of model topology for attack detection.

* Attribute Contributions: All defined neuron attributes contribute, with Influence being globally most significant and
Impact crucial for BIM/PGD attacks. Input Proportion's value is context-dependent (activation function).

* Transferability: Detectors trained on BIM or PGD attacks show strong transferability, effectively covering other
adversarial threats without needing a universal 'Total detector’.

* Impact: Our safeguard significantly reduces the success rates of evasion attacks on target models
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Future Work

* Detector Optimization:
* Exploring different GCN architectures and optimizing hyperparameters.
* Evaluating the method in more diverse scenarios and datasets.

* Interpretability and Explainability:
* Using the detector's embeddings to understand the relationship between topological information and neuron

behavior.
* Identifying vulnerable neurons to generate targeted local defenses.

* Broader Threat Detection:
* Extending the defense to detect other threats that cause activation anomalies, such as poisoning and trojaning

attacks.

* Full Model Analysis:
* Expanding the analysis to include the feature extractor part of the model (requires advanced preprocessing due to

high parameter count).



Thank You
xetxeberrial@vicomtech.org @

Thank You for yOur www.linkedin.com/in/xechefiei -
attention!

Questions?




