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Overview

• Problem: Deep Learning models introduce cybersecurity 
vulnerabilities, especially evasion attacks that modify 
decision-making. Existing defenses are not perfect.

• Our Solution: A novel detector of evasion attacks that:
• Analyzes activations of neurons when an input sample 

is injected.
• Pays attention to the topology of the targeted deep 

learning model (how neurons connect).
• Uses Graph Convolutional Neural Network (GCN) 

technology to understand model topology.

• Key Outcomes: Achieves promising results, improving 
detection rates compared to similar defenses in the 
literature. This approach also offers a new way to develop 
such detectors.

Activation

Artificial Neuron

Artificial Neural Network

GCN



Motivation

• Deep Learning (DL) Advancements: Rapid adoption in critical 
fields like healthcare and autonomous vehicles.

• New Threats: These advancements come with significant 
cybersecurity vulnerabilities, including potential for data 
leakage and manipulation of model decisions.

• Focus: Evasion Attacks
• A worrisome threat where attackers add imperceptible 

noise to an input sample.
• This noise modifies the original output prediction to 

cause misclassification.
• Examples of Evasion Algorithms: L-BFGS, Fast Gradient 

Sign Method (FGSM), Basic Iterative Method (BIM), 
Projected Gradient Descent (PGD), and Carlini-Wagner 
Method.

• The Challenge: Despite ongoing research, no perfect defense 
exists for all known evasion algorithms. Researchers are 
continuously developing new countermeasures.
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Why Topology Matters

• Small perturbations from evasion attacks can greatly alter neuron 
relationships and prediction pathways within the model.

• Topological information is crucial for understanding the model's behavior 
and detecting perturbations.
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Proposal

• Core Idea: Develop an evasion attack detector based on graph 
neural network technology.

• Target: Focuses on the classifier part of the deep learning model.

• Process:
1. Preprocessing: Convert the classifier's behavior for an input 

into a behavior graph.
2. Attribute Extraction: Compute novel neuron attributes that 

capture detailed behavioral and topological information.
3. GCN Detector: A Graph Convolutional Neural Network (GCN) 

consumes these graphs and attributes to identify adversarial 
inputs.

• Goals:
• Improve existing detection rates.
• Introduce a new way to develop detectors in this field by 

explicitly leveraging topology.
• Potentially provide detailed information about vulnerable 

neurons (future work) Kangaroo



Preprocessing

• Definition: A Weighted Digraph that represents the classifier’s 
behavior for a given input image.

• Components:
• Nodes: The individual neurons of the classifier.
• Edges: The connections between neurons, showing the 

flow of information.
• Weighted Edges: The activation values of neurons, 

quantifying their influence or how strongly they fire.

• Significance: This graph precisely shows how neurons are activating 
and influencing decisions, providing a direct representation of the 
targeted model's behavior.

• Flexibility: Can be generated for any classifier architecture, 
regardless of the number of hidden layers.

• Origin: First conceptualized by Echeberria et al. in [1] to visualize 
model behavior.



Attribute Extraction
Impact

• Definition: Measures how a neuron modifies the values it receives 
to influence the prediction.

• Modification: We normalize activations by layer to address scale 
differences between various activation functions (e.g., ReLU vs. 
Sigmoid), an improvement over prior definitions.

• Interpretation:
• >> 0: High positive modification
• > 0: Slight positive modification
• = 0: Keeps values equal
• < 0: Slight negative modification
• << 0: High negative modification

• Visualization: Blue for negative impact, Red for positive, Green for 
null



Attribute Extraction
Influence

• Definition: Highlights neurons that participate in the prediction with 
the highest activation values within their layer.

• Modification: Adapted from Hohman et al. for dense neural 
networks, also uses layer-wise normalization.

• Mechanism: Sorts normalized activations by layer; assigns '1' to top 
neurons whose cumulative activation reaches a parameter p (e.g., 
0.5), '0' otherwise.

• Visualization: Highlighted (red) for influential neurons.



Attribute Extraction
Input Proportion

• Definition: The percentage of non-null input values a neuron 
receives, relative to all possible inputs it could receive based on 
topology.

• Information Content: Highly dependent on the activation function 
of the targeted model.

• ReLU: Provides useful information as it maps values to zero.
• Sigmoid: Less informative as it rarely produces null values.

• Relevance: Helps detect adversarial examples by identifying "weird" 
null activation patterns (e.g., a "dog" image with cat-like null 
activations).

• Visualization: Colors nodes based on their input proportion



Attribute Extraction
Specialization

• Definition: Measures the frequency with which a neuron actively 
participates in predicting a concrete class (e.g., 'Class 0-
specialization', 'Class 1-specialization’).

• Modification: Instead of solely relying on null activation values, it 
considers if a neuron's activation is among the k-top activations 
within its layer. This is crucial for models with non-ReLU activation 
functions.

• Mechanism: For each class, it calculates how often a neuron's 
activation falls into the top-k activations across all images of that 
class.

• Visualization: A white-red-black scale to indicate low to high 
specialization



Detection Dataset

Data Preprocessing Pipeline (for each image):

1. Behavior Graph Generation: Compute 
behavior graph for the classifier.

2. Adjacency Matrix: Represents the 
connectivity of the graph.

3. Attribute Computation: Calculate Impact, 
Influence, Input Proportion, and t 
Specialization attributes for all neurons.

4. Attribute Aggregation: Group these into a 
feature vector per neuron.

5. Labeling: Assign a label (1 for adversarial, 0 
for legitimate) for the detector's training

Corrupted
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Detector Model

• Rationale: GCNs are ideal for leveraging topological information 
and the inherent structure-property relationship in deep learning 
models.

• Architecture: Adopted from a successful fake news detection model.

• GCN Block: Multiple GCN layers (hyperbolic tangent activation) to 
capture graph-level features.

• Convolutional Block: 1D convolution layers (ReLU activation) to 
process concatenated GCN outputs.

• Classifier Block: Dense layers (sigmoid activation) for final 
adversarial/legitimate classification



Experimental Setup

• Target Model:
• Feature Extractor: VGG16 Neural Network.
• Classifier: A dense neural network implemented with a 

Sigmoid activation function. (Note: Differs from which 
used ReLU).

• Dataset: Breast Cancer Dataset
• Two classes: Non-cancer (Class 0) and Cancer (Class 1).
• Split: 70% training, 30% test (stratified split to preserve 

class proportions).
• Adversarial Examples Generation:

• Algorithms:
• Fast Gradient Sign Method (FGSM)
• Basic Iterative Method (BIM)
• Projected Gradient Descent (PGD)

• Perturbation Budget: ϵ = 5/255 for all.
• Optimization Steps: FGSM (1 step), BIM (10 steps), 

PGD (40 steps).

• Generated Datasets for Detector:
• FGSM Dataset: (9,489 adversarial, 9,489 normal)
• BIM Dataset: (9,378 adversarial, 9,378 normal)
• PGD Dataset: (8,087 adversarial, 8,087 normal)
• Total Dataset: (26,954 adversarial, 26,954 normal) - combined 

from all three.
• Attribute Parameters: Influence p = 0.5, Specialization k = 10, 

Number of classes t = 2.



Results

• Trained Detectors: FGSM, BIM, PGD, and Total (trained on 
respective datasets).

• Accuracies:
• BIM Detector: 96.90% (Highest performance)
• PGD Detector: 95.73%
• Total Detector: 92.19%
• FGSM Detector: 88.32% (Lowest, FGSM is a less refined 

attack)
• Training Stability: No significant overfitting observed; loss 

and accuracy curves converged well.
• Impact on Attack Success Rate:

• Original Model (No Defense): FGSM (0.4744), BIM 
(0.9378), PGD (0.8087).

• Defended Model (with our detector):
• FGSM attack success reduced to 0.0554
• BIM attack success reduced to 0.0290
• PGD attack success reduced to 0.0345

• Conclusion: Our detector significantly reduces the success 
rate of evasion attacks.



Results
Comparison with Literature

1. Auxiliary Model Detectors:
• Compared our detector with leading auxiliary model 

detectors: LID, NSS, and KD+BU.
• Our detector significantly outperforms all of them:

• FGSM: 0.8832 (Our) vs. 0.8076 (NSS - 2nd best)
• PGD: 0.9573 (Our) vs. 0.8142 (NSS - 2nd best)
• BIM: 0.969 (Our) vs. 0.8028 (NSS - 2nd best)

• Performance Improvement: Our detector shows 8-
16% higher accuracy compared to the second-best 
detector (NSS) across different attacks.

2. Similar Method: Pawlicki et al.
• Theoretical Comparison (empirical difficult due to different 

data: network traffic vs. images).
• Pawlicki et al.: Uses a long 1D vector of all activation values, 

without topological consideration.
• Our Work:

• More scalable: Focuses on the classifier block only.
• Topologically aware: Explicitly considers and combines 

activation values with the model's topology, generating 
richer features..



• Hypothesis: Topological information, captured by GCNs, is essential 
for effective detection.

• Comparison: Our proposed GCN detector vs. a basic MLP detector.
• MLP Detector: Used a single hidden layer with 200 neurons, 

mirroring the dense part of our GCN architecture, but without 
topological awareness.

• Accuracies:
• GCN Detector (Total): 92.19%
• MLP Detector (Total): 84.65%

• GCN vs. MLP - Individual Attacks:
• FGSM: GCN (0.8832) vs. MLP (0.8140)
• BIM: GCN (0.969) vs. MLP (0.9170)
• PGD: GCN (0.9573) vs. MLP (0.8930)

• Conclusion: The GCN detector performs considerably better in all 
cases, unequivocally supporting the importance of topology in 
understanding deep learning models and detecting attacks.

Results
Topological Information 

92.19%

𝑎11 𝑎12 … 𝑎𝑛𝑛

84.65%



• Question: Can a detector trained on one attack type successfully 
detect others?

• Experiment: Each trained detector (FGSM, BIM, PGD, Total) 
evaluated against all adversarial datasets.

• Key Findings:
• FGSM detector: Shows reduced performance on BIM (0.7097) 

and PGD (0.6923) datasets.
• BIM detector: Performs outstandingly across all datasets 

(FGSM: 0.8704, BIM: 0.969, PGD: 0.9637).
• PGD detector: Also performs well across all datasets (FGSM: 

0.8645, BIM: 0.9501, PGD: 0.9573), though slightly less than 
BIM.

• Conclusion: A 'Total detector' is not always necessary. Detectors 
trained on BIM or PGD attacks demonstrate strong transferability, 
effectively covering other adversarial threats.

• Insight: The BIM detector consistently outperformed the PGD 
detector, even on PGD attacks. This suggests the BIM dataset might 
contain 'less noise' (fewer ineffective modifications) compared to 
PGD, allowing for better generalization

Results
Detector Transferability
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• Experiment: Detectors trained using only one attribute 
(Impact, Influence, Input Proportion, or Specialization) on the 
Total dataset.

• Purpose: To understand the individual contribution of each 
attribute to detection performance.

• Accuracies:
• Influence detector: Highest overall accuracy (0.9131), 

most helpful for global detection and FGSD attacks.
• Impact detector: High accuracy (0.9047), most 

informative for BIM and PGD attacks.
• Input Proportion detector: Lowest accuracy (0.8531).
• Specialization detector: Also lower (0.8598).

• Note on Input Proportion: Its low performance is likely due to 
the Sigmoid activation function in our target model, which 
rarely produces null values.

• This attribute could be more valuable with activation 
functions that map values to zero (e.g., ReLU).

• Conclusion: While Influence is globally most informative, 
Impact is crucial for BIM/PGD, and all attributes potentially 
complement each other.

Results
Attribute Contribution



• Experiment: Detectors trained with all attributes EXCEPT one (Non-
Impact, Non-Influence, Non-Proportion, Non-Specialization) on the 
Total dataset.

• Purpose: To identify the unique and non-redundant contribution of 
each attribute to the full model's performance.

• Accuracies:
• Total detector (for reference): 0.9219

• Non-Influence detector: Shows the most significant reduction 
for FGSM attack detection (0.8345 vs. 0.8435 for Total), 
confirming Influence's unique role there.

• Non-Impact detector: Leads to the most significant reductions 
for BIM (0.9453 vs. 0.9614) and PGD (0.9285 vs. 0.9524) 
attacks, highlighting Impact's critical role for these attacks.

• Non-Specialization detector: Performance (0.9192) is very 
close to the Total detector, suggesting its information might 
largely be covered by other attributes in this scenario.

• Overall: All attributes generally provide extra information, though 
their specific impact varies by attack type.

Results
Ablation Analysis
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• Novel Detector: The development of a novel evasion attack detector with a successful performance.

• Key Innovation: The integration of topological information (behavior graphs) into the detection process using Graph 
Convolutional Networks (GCNs).

• Validation of Topology: Our GCN detector consistently outperformed a basic MLP detector, confirming the crucial 
importance of model topology for attack detection.

• Attribute Contributions: All defined neuron attributes contribute, with Influence being globally most significant and 
Impact crucial for BIM/PGD attacks. Input Proportion's value is context-dependent (activation function).

• Transferability: Detectors trained on BIM or PGD attacks show strong transferability, effectively covering other 
adversarial threats without needing a universal 'Total detector’.

• Impact: Our safeguard significantly reduces the success rates of evasion attacks on target models

Conclusions



• Detector Optimization:
• Exploring different GCN architectures and optimizing hyperparameters.
• Evaluating the method in more diverse scenarios and datasets.

• Interpretability and Explainability:
• Using the detector's embeddings to understand the relationship between topological information and neuron 

behavior.
• Identifying vulnerable neurons to generate targeted local defenses.

• Broader Threat Detection:
• Extending the defense to detect other threats that cause activation anomalies, such as poisoning and trojaning

attacks.

• Full Model Analysis:
• Expanding the analysis to include the feature extractor part of the model (requires advanced preprocessing due to 

high parameter count).

Future Work
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